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Why Glass Elasticity Affects
the Thermodynamics and
Fragility of Supercooled
Liquids

Le Yan, Gustavo Düring and Matthieu Wyart

Super-cooled liquids are characterized by their fragility: the slowing down of the
dynamics under cooling is more sudden and the jump of specific heat at the glass
transition is generally larger in fragile liquids than in strong ones. Despite the
importance of this quantity in classifying liquids, explaining what aspects of the
microscopic structure controls fragility remains a challenge. Surprisingly, exper-
iments indicate that the linear elasticity of the glass – a purely local property of
the free energy landscape – is a good predictor of fragility. In particular, materi-
als presenting a large excess of soft elastic modes, the so-called boson peak, are
strong. This is also the case for network liquids near the rigidity percolation,
known to affect elasticity. Here we introduce a model of the glass transition
based on the assumption that particles can organize locally into distinct con-
figurations, which are coupled spatially via elasticity. The model captures the
mentioned observations connecting elasticity and fragility. We find that materi-
als presenting an abundance of soft elastic modes have little elastic frustration:
energy is insensitive to most directions in phase space, leading to a small jump
of specific heat. In this framework strong liquids turn out to lie the closest to a
critical point associated with a rigidity or jamming transition, and their ther-
modynamic properties are related to the problem of number partitioning and to
Hopfield nets in the limit of small memory.
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14.1 Introduction

When a liquid is cooled rapidly to avoid crystallization, its viscosity increases
up to the glass transition where the material becomes solid. Although this phe-
nomenon was already used in ancient times to mold artifacts, the nature of
the glass transition and the microscopic cause for the slowing down of the dy-
namics remain controversial. Glass-forming liquids are characterized by their
fragility [1, 2]: the least fragile liquids are called strong, and their characteristic
time scale τ follows approximatively an Arrhenius law τ(T ) ∼ exp(Ea/kBT ),
where the activation energy Ea is independent of temperature. Instead in frag-
ile liquids the activation energy grows as the temperature decreases, leading
to a sudden slowing-down of the dynamics. The fragility of liquids strongly
correlates with their thermodynamic properties [3, 4]: the jump in the specific
heat that characterizes the glass transition is large in fragile liquids and mod-
erate in strong ones. Various theoretical works [5, 6, 7, 8], starting with Adam
and Gibbs, have proposed explanations for such correlations. By contrast few
propositions, see e.g. [9, 10, 11], have been made to understand which aspects of
the microscopic structure of a liquid determines its fragility and the amplitude
of the jump in the specific heat at the transition.

Observations indicate that the linear elasticity of the glass is a key factor
determining fragility – a fact a priori surprising since linear elasticity is a lo-
cal property of the energy landscape, whereas fragility is a non-local property
characterizing transition between meta-stables states. In particular (i) glasses
are known to present an excess of soft elastic modes with respect to Debye vi-
brations at low frequencies, the so-called boson peak that appears in scattering
measurements [12]. The amplitude of the boson peak is strongly anti-correlated
with fragility, both in network and molecular liquids: structures presenting an
abundance of soft elastic modes tend to be strong [13, 14]. (ii) In network
glasses, where particles interact via covalent bonds and via the much weaker
Van der Waals interactions, the microscopic structure and the elasticity can be
monitored by changing continuously the composition of compounds [15, 16, 17].
As the average valence r is increased toward some threshold rc, the covalent
networks display a rigidity transition [18, 19] where the number of covalent
bonds is just sufficient to guarantee mechanical stability. Rigidity percolation
has striking effects on the thermal properties of super-cooled liquids: in its vicin-
ity, liquids are strong [20] and the jump of specific heat is small [15]; whereas
they become fragile with a large jump in specific heat both when the valence
is increased, and decreased [15, 20]. It was argued [9] that fragility should de-
crease with valence, at least when the valence is small. There is no explanation
however why increasing the valence affects the glass transition properties in a
non-monotonic way, and why such properties are extremal when the covalent
network acquires rigidity [21].

Recently it has been shown that the presence of soft modes in various
amorphous materials, including granular media [24, 25, 22, 23], Lennard-Jones
glasses [23, 26], colloidal suspensions [27, 28, 29] and silica glass [30, 23] was
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controlled by the proximity of a jamming transition[31], a sort of rigidity tran-
sition that occurs for example when purely repulsive particles are decompressed
toward vanishing pressure [24]. Near the jamming transition spatial fluctuations
play a limited role and simple theoretical arguments [22, 23] capture the con-
nection between elasticity and structure. They imply that soft modes must be
abundant near the transition, suggesting a link between observations (i) and (ii).
However these results apply to linear elasticity and cannot explain intrinsically
non-linear phenomena such as those governing fragility or the jump of specific
heat. In this article we propose to bridge that gap by introducing a model for the
structural relaxation in super-cooled liquids. Our starting assumption is that
particles can organize locally into distinct configurations, which are coupled at
different points in space via elasticity. We study what is perhaps the simplest
model realizing this idea, and show numerically that it captures qualitatively
the relationships between elasticity, rigidity, thermodynamics and fragility. The
thermodynamic properties of this model can be treated theoretically within a
good accuracy in the temperature range we explore. Our key result is the follow-
ing physical picture: when there is an abundance of soft elastic modes, elastic
frustration vanishes, in the sense that a limited number of directions in phase
space cost energy. Only those directions contribute to the specific heat, which
is thus small. Away from the critical point, elastic frustration increases: more
degrees of freedom contribute to the jump of specific heat, which increases while
the boson peak is reduced.

14.2 Model

Our main assumption is that in a super-cooled liquid, nearby particles can
organize themselves into a few distinct configurations. Consider for example
covalent networks sketched in Fig. 14.1, where we use the label ⟨ij⟩ to indi-
cate the existence of a covalent bond between particles i and j. If two covalent
bonds ⟨12⟩ and ⟨34⟩ are adjacent, there exists locally another configuration for
which these bonds are broken, and where the bonds ⟨13⟩ and ⟨24⟩ are formed
instead. These two configurations do not have the same energy in general. More-
over going from one configuration to the other generates a local strain, which
creates an elastic stress that propagates in space. In turn, this stress changes
the energy difference between local configurations elsewhere in the system. This
process leads to an effective interaction between local configurations at different
locations.

Our contention is that even a simple description of the local configurations
– in our case we will consider two-level systems, and we will make the approxi-
mation that the elastic properties do not depend on the levels – can capture sev-
eral unexplained aspects of super-cooled liquids, as long as the salient features
of the elasticity of amorphous materials are taken into account. To incorporate
in particular the presence of soft modes in the vibrational spectrum we consider
random elastic networks. The elasticity of three types of networks have been
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Figure 14.1: Top row: sketches of covalent networks with different mean valence
r around the valence rc: red solid lines represent covalent bonds; cyan dash lines
represent van der Waals interactions. Bottom: sketch of our elastic network
model with varying coordination number z (defined as the average number of
strong springs in red) around Maxwell threshold zc; cyan springs have a much
weaker stiffness, and model weak interactions.

studied extensively: networks of springs randomly deposited on a lattice [32],
on-lattice self-organized networks [33] and off-lattice random networks with
small spatial fluctuations of coordination [34, 35, 36]. We shall consider the
last class of networks, which are known to capture correctly the scaling prop-
erties of elasticity near jamming, and can be treated analytically [22, 35, 37].
It is straightforward to extend our model to self-organized networks1. In our
model two kinds of springs connect the N nodes of the network: strong ones,
of stiffness k and coordination z, and weak ones, of stiffness kw and coordi-
nation zw. These networks undergo a rigidity transition as z crosses zc = 2d,
where d is the spatial dimension. For z < zc elastic stability is guaranteed
by the presence of the weak springs. As indicated in Fig. 14.1, this situation
is similar to covalent networks, where the weak Van der Waals interactions
are required to insure stability when the valence r is smaller than its critical
value rc.

Initially when our network is built, every spring ⟨ij⟩ is at rest: the rest
length follows l0⟨ij⟩ = ||R0

i −R0
j ||, where R0

i is the initial position of the node i.
To allow for local changes of configurations we shall consider that any strong
spring ⟨ij⟩ can switch between two rest lengths: l⟨ij⟩ = l0⟨ij⟩ + ϵσ⟨ij⟩, where
σ⟨ij⟩ = ±1 is a spin variable. There are thus two types of variables: the Ns ≡
zN/2 spin variables {σ⟨ij⟩}, which we shall denote using the ket notation |σ⟩,
and the Nd coordinates of the particles denoted by |R⟩. The elastic energy
E(|R⟩, |σ⟩) is a function of both types of variables. The inherent structure

1If the network is assumed to present a rigidity window for which a subpart of the system
is critical, we expect that within this window thermodynamics and fragility would behave as
the critical point z = zc in the present model.
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energy H̃(|σ⟩) associated with any configuration |σ⟩ is defined as:

H̃(|σ⟩) ≡ min|R⟩E(|R⟩, |σ⟩) ≡ kϵ2H(|σ⟩) (14.1)

where we have introduced the dimensionless Hamiltonian H. We shall con-
sider the limit of small ϵ, where the vibrational energy is simply that of har-
monic oscillators. In this limit all the relevant information is contained in the
inherent structures energy, since including the vibrational energy would in-
crease the specific heat by a constant, which does not contribute to the jump of
that quantity at the glass transition. In this limit, linear elasticity implies the
form:

H(|σ⟩) = 1

2

∑
γ,β

Gγ,βσγσβ + o(ϵ2) ≡ 1

2
⟨σ|G|σ⟩+ o(ϵ2) (14.2)

where γ and β label strong springs, Gγ,β is the Green function describing how
a dipole of force applied on the contact γ changes the amplitude of the force
in the contact β. Note that models where some kind of defects interact elas-
tically, leading to Hamiltonians similar in spirit to that of Eq.(14.2), have
been proposed to investigate the low-temperature properties of glasses [38] and
super-cooled liquids [10]. These models however assume continuum elasticity,
unlike our model which can incorporate the effects of a rigidity transition and
the presence of a boson peak.

Gγ,β is computed in Appendix A in SI and reads:

G = I − SsM−1Sts (14.3)

where I is the identity matrix, and Ss and the dimensionless stiffness matrix
M are standard linear operators connecting forces and displacements in elastic
networks [39]. They can be formally written as:

M = StsSs +
kw
k

StwSw, (14.4)

S• =
∑

⟨ij⟩•≡γ

|γ⟩nij(⟨i| − ⟨j|)

where ⟨i|R⟩ ≡ Ri, ⟨ij⟩• indicate a summation over the strong springs (• = s) or
the weak springs (• = w). S• is a N• × dN matrix which projects any displace-
ment field onto the contact space of strong or weak springs. The components
of this linear operator are uniquely determined by the unit vectors nij directed
along the contacts ⟨ij⟩ and point toward the node i.

Finally note that the topology of the elastic network is frozen in our model.
This addition of frozen disorder is obviously an approximation, as the topology
itself should evolve as local configurations change. Our model thus misses the
evolution of elasticity with temperature, that presumably affects the slowing
down of the dynamics [8] and gives a vibrational contribution to the jump of
specific heat [8, 40]. Building models which incorporate this possibility, while
still tractable numerically and theoretically, remains a challenge.
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14.3 Simulation

14.3.1 Network Structure

Random networks with weak spatial fluctuations of coordination can be gener-
ated from random packings of compressed soft particles [34, 35, 36]. We consider
packings with periodic boundary conditions. The centers of the particles cor-
respond to the nodes of the network, of unit mass m = 1, and un-stretched
springs of stiffness k = 1 are put between particles in contact. Then springs are
removed, preferably where the local coordination is high, so as to achieve the
desired coordination z. In a second phase, Nw weak springs are added between
the closest unconnected pairs of nodes. The relative effect of those weak springs
is best characterized by α ≡ (zw/d)(kw/k), which we modulate by fixing zw = 6
and changing (kw/k). Note that an order of magnitude estimate of α in covalent
glasses can be obtained by comparing the behavior of the shear modulus G in
the elastic networks [34] and in network glasses near the rigidity transition. As
shown In Fig. 1 of SI (Appendix B), this comparison yields the estimate that
α ∈ [0.01, 0.05].

14.3.2 Thermodynamics

We introduce the rescaled temperature T = T̃ kB/(kϵ
2) where T̃ is the tem-

perature. To equilibrate the system, we perform a one spin-flip Monte Carlo
algorithm. The energy H of configurations are computed using Eq.(14.2). We
use 5 networks of N = 256 nodes in two dimensions and N = 216 in three
dimensions, each run with 10 different initial configurations. Thus our results
are averaged on these 50 realizations. We perform 109 Monte Carlo steps at
each T . The time-average inherent structure energy E = ⟨H⟩ is calculated as
a function of temperature, together with the specific heat Cv = ∂E/∂T . The
intensive quantity c(T ) ≡ Cv/Ns is represented in Fig. 14.2 for various excess
coordination δz = z − zc and α = 3× 10−4. We observe that the specific heat
increases under cooling, until the glass transition temperature Tg where c(T )
rapidly vanishes, indicating that the system falls out of equilibrium.

The amplitude of c(T ) just above Tg thus corresponds to the jump of
specific heat ∆c2, and is shown in Fig. 14.3. Our key finding is that as the
coordination increases, ∆c(z) varies non-monotonically and is minimal in the
vicinity of the rigidity transition for all values of α investigated, as observed
experimentally [15]. This behavior appears to result from a sharp asymmetric
transition at α → 0. For z > zc we observe that ∆c(z) ∝ δz. The jump in
specific heat thus vanishes as δz → 0+ where the system can be called “perfectly
strong”. For z < zc, ∆c is very rapidly of order one. When α increases, this

2In our approach the absolute value of the specific heat will depend on the minimal
number of particles needed to generate distinct local configurations, and on the number of
configurations such a group can generate. If those two numbers are of order one, our model
predicts that ∆c is of order one per particle or “beads”, as observed near the glass transition
[6].
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Figure 14.2: Specific heat c(T ) v.s. rescaled temperature T/Tg for various ex-
cess coordination δz ≡ z − zc as indicated in legend, for α = 3 × 10−4 and
d = 2. c(T ) displays a jump at the glass transition. Solid lines are theoretical
predictions, deprived of any fitting parameters, of our mean-field approxima-
tion. They terminate at the Kautzman temperature TK . Inset: glass transition
temperature Tg vs δz for several amplitude of weak interactions α, as indicated
in legend.

sharp transition becomes a cross-over, marked by a minimum of ∆c(z) at some
coordination larger but close to zc.

14.3.3 Dynamics

To characterize the dynamics we compute the correlation function C(t) =
⟨σ(t)|σ(0)⟩, which decays to zero at long time in the liquid phase. We define the
relaxation time τ as C(τ) = 1/2, and the glass transition temperature Tg as
τ(Tg)/τ(∞) = 105. Finite size effects on τ appear to be weak, as shown in Ap-
pendix C (SI). The Angell plot representing the dependence of τ with inverse
rescaled temperature is shown in the inset of Fig. 14.4. It is found that the
dynamics follows an Arrhenius behavior for α→ 0 and z ≈ zc. Away from the
rigidity transition, the slowing down of the dynamics is faster than Arrhenius.
To quantify this effect we compute the fragility m ≡ ∂ log10 τ

∂(Tg/T ) |T=Tg , whose vari-

ation with coordination is presented in Fig. 14.4. Our key finding is that for all
weak interaction amplitudes α studied, the fragility depends non-monotonically
on coordination and is minimal near the rigidity transition, again as observed
empirically [20] in covalent liquids. As was the case for the thermodynamic
properties, the fragility appears to be controlled by a critical point present at
α = 0 and z = zc where the liquid is strong, and the dynamics is simply Arrhe-
nius. As the coordination changes and |δz| increases, the liquid becomes more
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Figure 14.3: Jump of specific heat ∆c versus excess coordination δz in d = 2
for different strength of weak springs α, as indicated in legend. Solid lines are
mean-field predictions not enforcing the orthogonality of the |δrp⟩, dashed-line
corresponds to the ROM where orthogonality is enforced. In both cases the
specific heat is computed at the numerically obtained temperature Tg. Inset:
theoretical predictions for ∆c vs δz computed at the theoretical temperature
TK .

fragile. The rapid change of fragility near the rigidity transition is smoothed
over when the amplitude of the weak interaction α is increased.

14.3.4 Correlating Boson Peak and Fragility

The presence of soft elastic modes in glasses can be analyzed by considering the

maximum of Z(ω) ≡ D(ω)
DD(ω) [12], where D(ω) is the vibrational density of states

and DD(ω) ∝ ω2 the Debye model for this quantity. The maximum of Z(ω),
ABP = Z(ωBP ) defines the boson peak frequency ωBP [12] and it normalized
amplitude ABP [13]. The inverse of ABP was shown to strongly correlate with
fragility [13, 14] both in molecular liquids and covalent networks.

To test if our model can capture this behavior we compute the density
of states via a direct diagonalization of the stiffness matrix, see Eq.(14.4). To
compute Z(ω) the Debye density of states is estimated as D(ω) ∼ ω2/G3/2

where G is the shear modulus (bulk and shear moduli scale identically in this
model, see e.g. [37]). Then we extract the maximum ABP = Z(ωBP ). The
dependence of 1/ABP is represented in Fig. 14.5 and shows a minimum near
the rigidity transition, and even a cusp in the limit α → 0. This behavior
can be explained in terms of previous theoretical results on the density of
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Figure 14.4: Fragility m and rescaled fragility msc extrapolated to the experi-
mental dynamical range (see Appendix D for a definition) versus excess coor-
dination δz for different strength of weak interactions α as indicated in legend,
in d = 2. Dash dot lines are guide to the eyes, and reveal the non-monotonic
behavior of m near the rigidity transition. Inset: Angell plot representing log τ
v.s. inverse temperature Tg/T for different δz and α = 3× 10−4.

states near the rigidity transition, that supports that 1/ABP ∼ |δz|1/2 when
α→ 03.

Fig. 14.5 shows that 1/ABP and the liquid fragility m are correlated in
our model, thus capturing observations in molecular liquids. The model also
predicts that 1/ABP and the jump of specific heat are correlated. Note that
the correlation between fragility and ABP is not perfect, and that two branches,
for glasses with low and with high coordinations, are clearly distinguishable.
In general we expect physical properties to depend on the full structure of the
density of states, as will be made clear for the thermodynamics of our model
below. The variable ABP , which is a single number, cannot capture fully this
relationship. In our framework it is a useful quantity however, as it characterizes
well the proximity of the jamming transition.

3When α → 0 and δz > 0, ωBP ∼ δz and D(ωBP ) ∼ 1 [22], whereas G ∼ δz [23], leading

to 1/ABP ∼
√
δz. For δz < 0, G ∼ −α/δz [34]. On the other hand the boson peak is governed

by the fraction ∼ δz of floppy modes, which gain a finite frequency ∼
√
α [35] thus we expect

D(ωBP ) ∼ −δz/
√
α and 1/ABP ∼

√
−δz.
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Figure 14.5: Left: Inverse boson peak amplitude 1/ABP versus excess coordi-
nation δz in our d = 3 elastic network model, for different weak interaction
strenghts as indicated in legend. Dash dot lines are drawn to guide one’s eyes.
Right: Inverse boson peak amplitude 1/ABP versus fragility m for different
weak springs α.

14.4 Theory

14.4.1 Thermodynamics in the Absence of Weak Interactions
(α = 0)

In the absence of weak springs the thermodynamics is non-trivial if z ≥ zc,
otherwise the inherent structure energies are all zero. Then Eq.(14.4) implies
M = StsSs, and Eq.(14.3) leads to G = I − Ss(StsSs)

−1Sts . Inspection of this
expression indicates that G is a projector on the kernel of Sts , which is generically
of dimensionNs−Nd ≡ δzN/2. This kernel corresponds to all the sets of contact
forces that balance forces on each node [23]. We denote by |δrp⟩, p = 1, ..., δzN/2
an orthonormal basis of this space. We may then rewrite G =

∑
p |δrp⟩⟨δrp| and

Eq.(14.2) as:

H(|σ⟩) = 1

2

δzN/2∑
p=1

⟨σ|δrp⟩2 (14.5)

Eq.(14.5) is a key result, as it implies that near the rigidity transition the
number δzN/2 of directions of phase space that cost energy vanishes. Only
those directions can contribute to the specific heat, which must thus vanish
linearly in δz as the rigidity transition is approached from above.

Eq.(14.5) also makes a connection between strong liquids in our frame-
work and well-know problems in statistical mechanics. In particular Eq.(14.5)
is similar to that describing Hopfield nets [41] used to store δzN/2 memo-
ries consisting of the spin states |δrp⟩. The key difference is the sign: in Hop-
field nets memories correspond to meta-stables states, whereas in our model



14.4. Theory 301

the vectors |δrp⟩ corresponds to maxima of the energy. A particularly inter-
esting case is δzN/2 = 1, the closest point to the jamming transition which
is non-trivial. In this situation the sum in Eq.(14.5) contains only one term:

H(|σ⟩) = 1
2 ⟨σ|δr1⟩

2 = 1
2 (
∑Ns

α=1 δr1,ασα)
2. This Hamiltonian corresponds to

the NP complete partitioning problem [42], where given a list of numbers (the
δr1,α) one must partition this list into two groups whose sums are as identical
as possible. Thermodynamically this problem is known [43] to map into the
random energy model [44] where energy levels are randomly distributed.

It is in general very difficult to compute the thermodynamic functions
of the problem defined by Eq.(14.5) because the vectors |δrp⟩ present spatial
correlations, as must be the case since the amplitude of the interaction ker-
nel Gγ,β must decay with distance. However this effect is expected to be mild
near the rigidity transition. Indeed there exists a diverging length scale at the
transition, see [35] for a recent discussion, below which Gγ,β is dominated by
fluctuations and decays mildly with distance. Beyond this length scale Gγ,β
presents a dipolar structure, as in a standard continuous elastic medium. We
shall thus assume that |δrp⟩ are random unitary vectors, an approximation of
mean-field character expected to be good near the rigidity transition.

Within this approximation, the thermodynamic properties can be derived
for any spectrum of G [45]. If the orthogonality of the vectors |δrp⟩ is preserved,
the Hamiltonian of Eq.(14.5) corresponds to the Random Orthogonal Model
(ROM) whose thermodynamic properties have been derived [45] as well as some
aspects of the dynamics [46]. Comparison of the specific heat of our model
and the ROM predictions of [45] is shown in Fig. 14.3 and are found to be
very similar. For sake of simplicity, in what follows we shall also relax the
orthogonal condition on the vectors |δrp⟩. This approximation allows for a
straightforward analytical treatment in the general case α ̸= 0, and is also
very accurate near the rigidity transition since the number of vectors δzN/2 is
significantly smaller than the dimension of the space dN they live in, making
random vectors effectively orthogonal. Under these assumptions we recover the
random Hopfield model with negative temperature.

In the parameter range of interest, the Hopfield free energy F = ln(Z)
(here (...) represents the disorder average on the |δrp⟩) is approximated very
precisely by the annealed free energy ln(Z) (this is obviously true for the num-
ber partitioning problem that maps to the Random Energy Model), which can
be easily calculated. Indeed in our approximations the quantities Xp ≡ ⟨σ|δrp⟩
are independent gaussian random variables of variance one, and:

Z ∝
∫ Nδz/2∏

p=1

dXp
1√
2π
e−X

2
p/2

 e−
1

2T

∑
pX

2
p (14.6)

Performing the Gaussian integrals we find:

c(T ) =
δz

2z

1

(1 + T )2
(14.7)
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The Kautzman temperature defined as s(TK) = 0 is found to follow TK ≈
2
e2

−2z/δz. Eq.(14.7) evaluated at Tg is tested against the numerics in Fig. 14.3
and performs remarkably well for the range of coordination probed.

14.4.2 General Case (α ̸= 0)

To solve our model analytically in the presence of weak interactions, we make
the additional approximation that the associated coordination zw → ∞, while
keeping α ≡ zwkw/(kd) constant. In this limit weak springs lead to an effective
interaction between each node and the center of mass of the system, that is
motionless. Thus the restoring force stemming from weak interactions |Fw⟩
follows |Fw⟩ = −α|δR⟩, leading to a simple expression in the stiffness matrix
Eq.(14.4) for the weak spring contribution kw

k StwSw = αI. It is useful to perform
the eigenvalue decomposition:

StsSs =
∑
ω

ω2|δRω⟩⟨δRω| (14.8)

where |δRω⟩ is the vibrational mode of frequency ω in the elastic network with-
out weak interactions. We introduce the orthonormal eigenvectors in contact
space |δrω⟩ ≡ Ss|δRω⟩/ω defined for ω > 0. For δz < 0 these vectors form a
complete basis of that space, of dimension Ns. When δz > 0 however, this set is
of dimension Nd < Ns, and it must be completed by the kernel of Sts , i.e. the set
of the |δrp⟩, p = 1, ..., δzN/2 previously introduced. Using this decomposition
in Eq.(14.3,14.4) we find:

H(|σ⟩) = 1

2

δzN/2∑
p=1

⟨σ|δrp⟩2 +
1

2

∑
ω>0

α

α+ ω2
⟨σ|δrω⟩2 (14.9)

where the first term exists only for δz > 0. Using the mean field approximation
that the set of |δrp⟩ and |δrω⟩ are random gaussian vectors, the annealed free
energy is readily computed, as shown in Appendix D (SI). We find in particular
for the specific heat:

c(T ) =
δz

2z

θ(δz)

(1 + T )2
+

1

2Ns

∑
ω>0

(
α

α+ (ω2 + α)T

)2

(14.10)

where θ(x) is the unitary step function. To compare this prediction with our
numerics without fitting parameters, we compute numerically the vibrational
frequencies for each value of the coordination. Our results are again in excellent
agreement with our observations, as appears in Figs. 14.2, 14.3.

To obtain the asymptotic behavior near jamming, we replace the sum-
mation over frequencies in Eq.(14.10) by an integral

∑
ω>0 → Ns

∫
dωD(ω).

The associated density of vibrational modes D(ω) in such networks has been
computed theoretically [37, 35, 22]. These results allows us to compute the
scaling behavior of thermodynamic properties near the rigidity transition, see
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Appendix E (SI). We find that the specific heat increases monotonically with
decreasing temperature. Its value at the Kautzman temperature thus yields an
upperbound on the jump of specific heat. In the limit α→ 0, we find that a sud-
den discontinuity of the jump of specific heat occurs at the rigidity transition:
c(TK) ∼ δz

2z for δz > 0
limδz→0− c(TK) ∼ πzc

8z

Eq.(14.4.2) states that adding weak

interactions is not a singular perturbation for δz > 0, and we recover Eq.(14.7).
On the other hand for δz < 0, the energy of inherent structures is zero in the
absence of weak springs, which thus have a singular effect. The relevant scale
of temperature is then a function of α. In particular we find that the Kautz-
man temperature is sufficiently low that all the terms in the second sum of
Eq.(14.10) contribute significantly to the specific heat, which is therefore large
as Eq.(14.4.2) implies. Thus as the coordination decreases below the rigidity
transition, one goes discontinuously from a regime where at the relevant tem-
perature scale the energy landscape consists of a vanishing number of costly
directions in phase space, whose cost is governed by the strong interaction k,
to a regime where the weak interaction α is the relevant one, and where at
the relevant temperature scale all directions in phase space contribute to the
specific heat.

Note that although the sharp change of thermodynamic behavior that
occurs at the rigidity transition is important conceptually, empirically a smooth
cross-over will always be observed. This is the case because (i) α is small but
finite. As α increases this sharp discontinuity is replaced by a cross-over at a
coordination δz ∼ ln(1/α)−1 (see Appendix E) where c(TK , z) is minimal, as
indicated in the inset of Fig. 14.3. (ii) The Kautzman temperature range is not
accessible dynamically, i.e. Tg >> TK near the rigidity transition. Comparing
Fig. 14.3 with its inset, our theory predicts that the minimum of c(Tg) is closer
to zc and more pronounced than at TK .

14.5 Discussion

Previous work [31] has shown that well-coordinated glasses must have a small
boson peak, which increases as the coordination (or valence for network glasses)
is decreased toward the jamming (or rigidity) transition. Here we have argued
that as this process occurs, elastic frustration vanishes: thanks to the abundance
of soft modes, any configuration (conceived here as a set of local arrangements
of the particles) can relax more and more of its energy as jamming is approached
from above. As a result, the effective number of degrees of freedom that cost en-
ergy and contribute to the jump of specific heat at the glass transition vanishes.
As the coordination is decreased further below the rigidity transition, the scale
of energy becomes governed by the weak interactions (such as Van der Waals)
responsible for the finite elasticity of the glass. At that scale, all direction in
phase space have a significant cost and the specific heat increases. This view
potentially explains why linear elasticity strongly correlates to key aspects of
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the energy landscape in network and molecular glasses [15, 16, 13, 14]. This
connection we propose between structure and dynamics can also be tested nu-
merically. Our results are consistent with the observation that soft particles
become more fragile when compressed away from the random close packing
[47]4. Another interesting parameter to manipulate is the amplitude of weak
interactions, which can be increased by adding long-range forces to the inter-
action potential [23, 26]. According to our analysis, doing so should increase
fragility, in agreement with existing observations [48].

The model of the glass transition we introduced turns out to be a spin
glass model, with the specificity that (i) the interaction is dipolar in the far
field, and that (ii) the sign of the interaction is approximatively random below
some length scale lc that diverges near jamming, where the coupling matrix
has a vanishingly small rank. Applying spin glass models to structural glasses
have a long history. In particular the Random First Order Transition theory
(RFOT) [6] is based on mean-field spin glass models that display a thermody-
namic transition at some TK where the entropy vanishes. A phenomenological
description of relaxation in liquids near TK based on the nucleation of random
configurations leads to a diverging time scale and length scale ξ at TK [6, 7].
One limitation of this approach is that no finite dimensional spin models with
two-body interactions have been shown to follow this scenario so far [49], and
it would thus be important to know if our model does display a critical point at
finite temperature. Our model will also allow one to investigate the generally
neglected role of the action at a distance allowed by elasticity, characterized by
a scale lc. In super-cooled liquids heterogeneities of elasticity (that correlates
to irreversible rearrangements) can be rather extended [50] suggesting that lc
is large. This length scale may thus play an important role in a description of
relaxation in liquids, and in deciphering the relationship between elastic and
dynamical heterogeneities.
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[20] Böhmer R, Angell CA (1991) Correlations of the nonexponentiality and
state dependence of mechanical relaxations with bond connectivity in Ge-
As-Se supercooled liquids. Phys Rev B 45:10091–10094.

[21] Micoulaut M, Boolchand P (2003) Comment on ‘Microscopic Theory of
Network Glasses’. Phys Rev Lett 91:159601-1.

[22] Wyart M, Nagel SR, Witten TA (2005) Geometric origin of excess low-
frequency vibrational modes in weakly connected amorphous solids. Euro-
phys Lett 72:486–492.

[23] Wyart M (2005) On the rigidity of amorphous solids. Annales de Physique
30(3):1.

[24] O’Hern CS, Silbert LE, Liu AJ, Nagel SR (2003) Jamming at zero tem-
perature and zero applied stress: The epitome of disorder. Phys Rev E
68:011306.

[25] Brito C, Dauchot O, Biroli G, Bouchand JP (2010) Elementary excitation
modes in a granular glass above jamming. Soft Matter 6:3013–3022.

[26] Xu N, Wyart M, Liu AJ, Nagel SR (2007) Excess vibrational modes and
the Boson peak in model glasses. Phys Rev Lett 98:175502.

[27] Brito C, Wyart M (2009) Geometric interpretation of previtrification in
hard sphere liquids. J Chem Phys 131:024504.

[28] Ghosh A, Chikkadi VK, Schall P, Kurchan J, Bonn D (2010) Density of
states of colloidal glasses. Phys Rev Lett 105:248305.

[29] Chen K, Ellenbroek WG, Zhang ZX, Chen DTN, Yunker PJ, Henkes S,
Brito C, Dauchot O, van Saarloos W, Liu AJ, Yodh AG (2010) Low-
frequency vibrations of soft colloidal glasses. Phys Rev Lett 105:025501.

[30] Trachenko KO, Dove MT, Harris MJ, Heine V (2000) Dynamics of silica
glass: two-level tunnelling states and low-energy floppy modes. J Phys:
Cond Matt 12:8041–8064.

[31] Liu AJ, Nagel SR, van Saarloos W, Wyart M (2010) in Dynamical Het-
erogeneities in Glasses, Colloids and Granular Media, eds Berthier L,
Biroli G, Bouchaud JP, van Saarloos W (Oxford, New York).

[32] Garboczi EJ, Thorpe MF (1985) Effective-medium theory of percolation
on central-force elastic networks. II. Further results. Phys Rev B 31:7276–
7681.

[33] Boolchand P, Lucovsky G, Phillips JC, Thorpe MF (2005) Self-
organization and the physics of glassy networks. Philos Mag 85:3823–3838.



References 307

[34] Wyart M, Liang H, Kabla A, Mahadevan L (2008) Elasticity of floppy and
stiff random networks. Phys Rev Lett 101:215501.
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