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Microrheology of Supercooled
Liquids in Terms of a

Continuous Time Random
Walk

Carsten F. E. Schroer and Andreas Heuer

In this short note we compare the discretization of the dynamics of super-
cooled liquids in configuration space, using metabasins, with the discretization
in real space, using a distance criterion. It turns out that several observables,
such as waiting-time distributions, are rather similar. However, significant de-
viations are observed when applying an external force. It is arqued that the
configuration space discretization is somewhat superior. Reprinted with permis-
sion from J Chem. Phys. 138, 12A518 (2013). Copyright 2013, AIP Publishing
LLC.”

23.1 Introduction

Since the continuous time random walk (CTRW) analysis presented in the orig-
inal article requires the minimization of structures concerning their potential
energy [1], it comes along with a rather high numerical effort. Therefore, the
important question emerges, whether a discretization of single particle trajecto-
ries in real space is also able to offer the same spatial and temporal information
as our potential energy landscape (PEL) approach.
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In literature, several approaches have been reported to discretize single
particle trajectories into stochastic events [2, 3, 4, 5, 6]. However, there were
major differences between the used protocols, especially, concerning the dis-
tance the particles have to travel until their motion is counted as a “transition”.
Furthermore, there are differences how the vibrational dynamics of the particles
is treated during the analysis. While in Ref. [2], motion is separated into low
displacement (i.e. vibrational) and high displacement (i.e. diffusive) events, the
vibrational part has been removed in Ref. [3] and Ref. [5] via integration of the
spatial distribution function [3] or rather averaging the trajectories in certain
time intervals [5].

Our aim was to develop a procedure to define real space transitions which
is close to the results we have obtained from our PEL analysis. Therefore, we
have adopted the averaging procedure from Ref. [5] which enables a suppres-
sion of thermal vibration and provides hopping-like trajectories, similar to the
athermal metabasin trajectories one obtains from the PEL analysis [1]. Since
there is a large variety of possibilities for how to define a spatial threshold, it
might be reasonable for a first guess to use the simplest criterion, which is that
a particle travels a distance d from its present position. This kind of criterion
was used, e.g. in Ref. [6]. It has been shown in Ref. [7] that the waiting-times
resulting from this type of discretization can very well reproduce the basic
properties of the PEL waiting-time distribution.

23.2 Computational Details

The analysis has been performed for the same binary Lennard-Jones liquids
that was studied in our original article. Please note, that we have restricted
our analysis to a temperature range above the computer glass transition, so
that no aging behavior is expected. As a first step, the real space trajectories
have been averaged over 200 structures, thus, reducing the local vibrations. Be-
cause we wanted to study the properties of a microrheologically driven system,
where the motion of the tracer particle is biased by an external force F', we
had to slightly modify the criterion for the definition of an event: We count a
transition to occur when the tracer particle either moves a distance +d along
or a distance —d against the force direction. If an event has taken places, the
current position of the tracer particle is defined as the starting point for the
next transition. The local waiting-time 71°¢! is defined as the time between
two of these events. Please note, that we have not counted the time from the
beginning of the simulation to the first event, so our 71°%! is related to the
exchange times in Ref. [6]. The computed local waiting-times strongly depend
on the chosen local threshold d. To be as close as possible to the metabasin
analysis we chose a value for d = 0.01 for which we recover a distribution of
local waiting-times ((71°°*!) which is, independent from temperature, in good
agreement with the distribution of metabasin waiting-times p(7™B) for F =0
(see Fig. 23.1).
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Figure 23.1: Distribution of local (cross€s) and metabasin (squares) waiting-
times for T'= 0.475 and T = 0.55 and no applied force.

23.3 Results

One of the central quantities we have studied in the original article was the
long-time velocity T of the tracer particle parallel to the force direction

5= lim 20 Z71()

23.1
t—00 t—to ( )

where x| denotes the absolute position of the tracer particle along the force
axis. By discretizing the trajectory of the tracer particle into single events, T
decomposes into a spatial part (Az|) and a temporal part (7)

(Az)
()

where (---) denotes an average over a large number of single events. In our
original article we have identified (Ax)) with the average displacement of the
tracer particle parallel to the force direction during one metabasin transition
and (7) with the average metabasin waiting-time. In the following we will write
(AwﬁAB> or rather (TMB) if we refer to the quantities resulting from the MB
discretization.

For the local events one can also obtain the spatial and temporal quantities
of Eq. 23.2, however, there are some qualitative differences. While the temporal
part results from a distribution function ¢(71°°*) which is, at least without an
applied force, similar to the metabasin distribution (see Fig. 23.1), the spatial
part is obtained by

(23.2)

v =

#Events(+) — #Events(—)
" #Events(+) + #Events(—)

(Azje) = d (23.3)

where #Events(4) denotes the number of events along, #Events(—) the num-
ber of events against the force direction and d the chosen radius (compare
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Figure 23.2: Upper panel. Drift velocity v divided by force F' at T = 0.475. The
dashed line indicates the linear response regime up to a the critical force F ,
(see text). Middle panel. Average spatial displacements <Ax1T/IB> and (Aml‘l‘)cal>
divided by force F' at T' = 0.475. The dashed line indicates tLe linear response
regime up to a the critical force Fi a, (see text). Lower panel. Average waiting
times (7MB) and (7'°®!) at T = 0.475. The dashed line indicates the linear

response regime up to a the critical force F,, 1 (see text).

Sec. 23.2). This means, that in contrast to the MB quantity, (Ax}‘o“ﬂ results

from a bimodal distribution and is restricted to a range of [—d, +d]. This also
means, that the choice of d also determines the outcome of the analysis, how-
ever, since ¢(7'°°!) is close to ¢(T™PB) (see Fig. 23.1) and Eq. 23.2 is valid, also
the average <Ax1H°C“1> must be close to (Amﬁ/IB).

The resulting average values are shown in Fig. 23.2. For (Amﬁ/IB> and

(tMB) one observes the interesting fact that linear and nonlinear response are
nearly exclusively decomposed: while (Amﬁ/IB> stays linear for almost the whole
range of forces, (TMPB) is constant for very low forces and displays a decay at
intermediate forces. As it can be observed in comparison to the upper panel
of Fig. 23.2, this decay coincides with the onset of nonlinear behavior of the
velocity . This behavior becomes more obvious by comparing the critical forces
F, x at which the dynamical response of quantity X differ more than 10% from
the expected linear response value: While ch and Fi, are identical, F; Ay
differs about a factor of three form this value. ~

For the average values resulting from the real space discretization, the
situation appears different. Although one also notice a relation between the
linear response and the spatial part, there is no hint to apportion the nonlinear
response only to (71°¢4!). At the force where one observes a decay of (7'°¢!), one
finds a similar decay of <Ax1‘|°"al> /F as well. The full decomposition of linear
and nonlinear response which we have broadly discussed in our original article
can, therefore, not be reproduced by the local discretization.

This result is some kind off drawback because it suggests that studying the
onset of nonlinearity in driven systems requires, by using the depicted protocol,
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the analysis of both, spatial and temporal contributions. For the metabasin
analysis indeed, only the study of the temporal part seems sufficient, which can
be directly linked to the properties of the underlying PEL.

23.4 Conclusion

In this article we tried to prove, whether it is possible to regain the results of
the metabasin analysis performed in “Microrheology of supercooled liquids in
terms of a continuous time random walk” by applying a real space discretiza-
tion procedure. The procedure was inspired by previous work in literature and
turned out to recover reasonable results for equilibrium systems [7]. In contrast
to undriven systems it turns out, that the real space discretization applied on
microrheologically driven systems offers not identical result but unfortunately
cannot recover the decomposition of linear and nonlinear contributions. On the
other hand this observation emphasizes, that the results which can be obtained
by our PEL approach do not just recover trivial effects one could also gain with
any arbitrary protocol but allows one a different perspective on the physics of
driven glassy systems.
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Molecular dynamics simulations of a glass-forming model system are performed under application
of a microrheological perturbation on a tagged particle. The trajectory of that particle is studied in
its underlying potential energy landscape. Discretization of the configuration space is achieved via a
metabasin analysis. The linear and nonlinear responses of drift and diffusive behavior can be inter-
preted and analyzed in terms of a continuous time random walk. In this way, the physical origin of
linear and nonlinear response can be identified. Critical forces are determined and compared with pre-
dictions from literature. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772627]

I. INTRODUCTION

In microrheological experiments, a physical system is
brought out of equilibrium by a rather simple perturbation,
which is acting on a small fraction of its constituents." These
experiments are of specific interest because the application
of a well-defined perturbation allows, first, to give predic-
tions about the non-equilibrium behavior of the system and,
second, to gain additional information about the equilibrium
properties of the system by analyzing the transition to the non-
equilibrium state.

In supercooled liquids in its (quasi-)equilibrium state,
one can observe a lot of unique dynamical properties such as
non-exponential relaxation or violation of the Stokes-Einstein
relation.” Typically, this is interpreted in terms of the presence
of dynamic heterogeneities; see Ref. 3 and references therein.
In recent years also, the microrheological properties of super-
cooled liquids have been studied experimentally*> as well as
theoretically.>” The occurrence of a nonlinear dynamical re-
sponse was reported for different dynamical quantities. As ex-
pected for general grounds,” the nonlinear response strongly
increases at lower temperatures.

For the equilibrium dynamics of supercooled liquids, it
has been shown that a description of the dynamics in terms
of transitions between metabasins (MB) yields important ad-
ditional information about the nature of the slow dynamics at
low temperatures.'%~'2 It has been shown that this discrete dy-
namics fulfills all criteria of a continuous time random walk
(CTRW)'3 4 if applied to the description of a small system
(0(10%) particles). Most importantly, it turns out that the dif-
fusivity of a small system only shows very small finite-size
effects'> whereas the structural relaxation time displays large
effects. This can be interpreted via facilitation effects.'> Go-
ing down in temperature may in principle modify the spatial
and the temporal aspects of the CTRW. Interestingly, it turns
out that the slowing down at low temperatures is exclusively

DElectronic mail: ¢.schroer@uni-muenster.de.
b Electronic mail: andheuer@uni-muenster.de.

determined by the temporal contributions.!! Furthermore one
can, for example, express the complete wave vector depen-
dence of the structural relaxation part of the incoherent scat-
tering function in terms of the properties of the waiting time
distribution, characterizing the CTRW.'* Thus, the mapping
of the MB dynamics on the CTRW is a powerful concept for
the description of supercooled liquids. Unfortunately, the lat-
ter approach can be only used for small systems.® The qualita-
tive reason is that very large systems can be decomposed into
basically independent smaller systems.'> Thus, spatial infor-
mation about the dynamic processes becomes essential, which
however, is not available in configuration space. More formal
arguments can be found in Ref. 3.

On a qualitative level, the external force gives rise to a
tilting of the potential energy landscape (PEL) for the tagged
particle. The key goal of the present work is to show how the
CTRW properties are modified upon this tilting. This allows
us to characterize the onset of nonlinearity in the mobility of
the tracer particles in terms of specific CTRW properties. Fur-
thermore, it will be demonstrated that a small system, analo-
gous to the equilibrium case, only displays small finite size
effects, even in a highly nonlinear regime. Therefore, a closer
understanding of microrheological effects in small systems al-
lows us to unravel the underlying physics of large systems as
well.

The paper is organized as follows: in Sec. II, we describe
details of the simulation. Section III contains the results and
their discussion. We conclude in Sec. IV.

Il. SIMULATIONS

‘We present the results of molecular dynamics (MD) sim-
ulations of a binary Lennard-Jones mixture, which consists
of two types of particles, A and B, whereas 80% of the parti-
cles are of type A. This system is known to be a prototype of a
glass-forming system.'® To be able to simulate system sizes as
small as 65 particles, the cutoff radius is reduced to 1.8 rather
than 2.5 (in dimensionless LJ-units).'” A microrheological
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perturbation is introduced to the system by randomly select-
ing one A type particle and pulling it with a constant force F
along a certain direction. To ensure that the system resides in
a stationary state, the system is equilibrated under application
of the force to the tracer particle. A priori it might be ques-
tionable, whether this equilibration procedure leads to differ-
ent results then equilibrating the system without the force and
starting the application at the beginning of the simulation. To
investigate this, we have performed additional simulations in
which the external field is switched off during the equilibra-
tion time.

A constant temperature during our simulations is
achieved by coupling the system to a Nosé-Hoover
thermostat.'® To avoid an unphysical cooling of the bath par-
ticles, the tracer particle is excluded from the thermostat. For
each temperature and force pair, we performed 15 to 30 inde-
pendent simulations.

A key element of our analysis is the tracking of minima
of the PEL, which the system explores during its time evo-
lution and which displays the impact of the external force.
We access these minimum energy structures by applying a
suitable optimization algorithm'” on the particle’s coordinates
with respect to their potential energy. Furthermore, following
the procedure as outlined in Refs. 3 and 17, the minima are
grouped together to metabasins (MB). As mentioned above,
the potential energy is minimized for the complete potential
energy, including the effect of the external force. In practice,
it turns out that for somewhat larger forces (¥ > 10) the min-
imization routine becomes instable. In any event, no larger
forces are needed since the onset of nonlinear effects occurs
at much smaller values of F.

In MD simulations, one generally prefers to simulate sys-
tems as large as possible to avoid any unphysical behavior due
to the finite-size of the system. However, since the CTRW ap-
proach in configuration space is only valid for small system
sizes,’ we focus on a small system with N = 65 (BLIM65),
which is close to the smallest system size without significant
finite-size effects for the diffusivity.' Due to linear response
theory, this automatically implies that also the linear regime
of the mobility in the microrheological setup should not dis-
play relevant finite-size effects. Whether or not this holds also
for the nonlinear regime will be checked by comparison with
the simulations of a larger system with 1560 particles and a
geometry of 3 : 1 : 1, the long side pointing along the force
direction (BLIM1560).

Ill. RESULTS AND DISCUSSION
A. Drift velocity in real space

One central quantity in the analysis of microrheological
properties is the drift velocity v the tracer particle obtains
due to the interplay of permanent acceleration along the force
direction and friction effects. Formally, the drift velocity is
given by the stationary long-time limit of the displacement of
the tracer particle parallel to the force direction x;(f) relative
to the time.

LX) = xy (o)
v=lim ———.
(=00 t—1oy

1)
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FIG. 1. Drift velocity v of BLIM65 . The dashed lines correspond to the
expected linear response behavior (see Eq. (2)). The solid line indicates
the critical forces F., at which the linear response regime (I) transforms
into the nonlinear regime (IT) (see Eq. (4)).

For BLIM65 , the force dependence of the drift velocity
for different temperatures is shown in Fig. 1. In the range of
forces of our investigation, one can observe two regimes: a
low force regime (I) in which the velocity increases linearly
with increasing force and a high force regime (II) in which it
exhibits a nonlinear growth of velocity.

In the first regime, the velocity satisfies the linear re-
sponse relation

v = DyBF, 2

(dashed lines in Fig. 1) in which D, stands for the one-
dimensional diffusion constant in equilibrium and g = k%r
for the inverse thermal energy. It is of particular interest that
the size of the linear regime is temperature dependent so that
it decreases with decreasing temperature. Similar to the work
of Williams et al.,” we quantify this observation by fitting the
curves with a symmetric power law

v

f=u2F2+un» 3)

Using this fit, one can define a threshold force

f0.1
Fop = [—2 @)
ay

by the criterion that the dynamical response differs more than
10% from the expected linear response behavior. The values
of these threshold forces are indicated as solid lines in Fig. 1.
The critical forces are further discussed in Sec. III D.

To analyze possible finite-size effects for the velocity,
we have compared the drift velocity of the BLIM65 and
BLIM1560 at a temperature of 7 = 0.475. In the linear
regime, one observes that the velocity of the larger system
slightly differs from the small system. According to linear
response theory, this just reflects analogous effects for the
equilibrium diffusivity as reported in Ref. 15. Additional
differences of the equilibrium diffusivities can result from
hydrodynamic effects due to the different geometries. Most
interestingly, after superimposing the velocity of the systems
in the linear regime (see Fig. 2) also the results for the nonlin-
ear regimes are rather close. Especially, the onset of nonlinear
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FIG. 2. Drift velocity v for BLIM65 and BLIMI560 at a temperature
T = 0.475. v was normalized via the particular equilibrium diffusion
constants Dy.

effects seems to be equal for both system sizes. Thus, under-
standing the nonlinearity for BLIMG65 is sufficient to unravel
the underlying physics also of large systems. In particular,
this allows one to use the CTRW framework in configuration
space for the elucidation of microrheological effects.
Another type of finite-size effect might result from the
equilibration of the system under application of the force. To
clucidate this, we have compared the drift velocities of the
tracer particle in a system, which was equilibrated with and
without the applied force field. The results are shown in Fig. 3.
For the switch-on experiment, one observes that the drift ve-
locity reaches a steady-state at 2 500. The velocities of these
steady-states are identical to the velocities we have deter-
mined from the simulations, which were equilibrated within
the applied field. The time window which is shown in Fig. 3 is
lower than the expected time 7, the particle needs to travel
through the simulation box (for F = 5: t,45 = 1309).

0.01
Z
A
= 0.001
x
<
\Y%
0.0001

0 100 200 300 400 500 600 700 800 9001000
t

FIG. 3. Average displacement (Ax(t)) of the tracer particle along the force
direction for BLIM65 at 7 = 0.5. The data points correspond to a system,
which was equilibrated without the application of the external force. The
dashed lines indicate the average velocity v of the system, which was equili-
brated under application of the forcefield.
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FIG. 4. Average displacement of the tracer particle during one MB transition
(Ax)) as a function of the applied force F. The solid line indicates the linear
response prediction by Eq. (8) while the dashed line includes the theoretical
prediction of nonlinear effects (Eq. (9)).

B. Drift velocity in CTRW terms

In principle, any kind of discretization of the trajectories
allows the decomposition of dynamical quantities in a spatial
and a temporal part. In case of the drift velocity, one can gen-
erally write

v = o) ®)
()

This relates the long-time drift to the average displace-
ment of the tracer particle along the force direction during a
single elementary step, (Ax;) and the average waiting time
(t). Because the waiting time cannot be affected by the di-
rection of the applied force, the value of () can only depend
on even powers of F. Therefore, the linear response regime
of small forces has to be related to the force dependence of
the spatial part. However, in case of the nonlinear regime, it
is a priori not clear, whether the spatial or temporal effects
dominate the dynamical responses.

The force dependence of (Ax) is shown in Fig. 4. One
observes a linear scaling at low and intermediate forces. This
behavior can be quantitatively understood by taking into ac-
count that the equilibrium diffusion constant D, can be ex-
pressed in CTRW terms'" as

2
o

Do= 3

(6)
The length scale u(z, refers to the one-dimensional aver-
aged diffusive length, a single A type particle moves during
one MB transition in an equilibrium system. It is defined by
the single particle displacement x in one dimension after a

large number of transitions n via

— x(0))?
PR COREC) @
n—>co n

As it was discussed in Ref. 11, a& is a temperature in-

dependent quantity. Inserting Eqgs. (5) and (6) in Eq. (2), one
obtains for the linear response regime
d(z)
(Ax)) = ?ﬂF, ®)

which is indicated as a solid line in Fig. 4.
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For the evolution of (Axy) in the nonlinear regime, one
can make a prediction by considering a one-dimensional pe-
riodic potential with a constant distance ay between two ad-
jacent minima. Under application of the force, the jumping
directions become biased so that one gets for the average dis-
placement

(Ax) = ap tanh %OﬂF. ©

This particular ansatz was further discussed by Jack
et al®® By linear expansion, Eq. (9) also includes the linear
response relation (Eq. (8)). However, from Eq. (9) one would
expect a negative nonlinear response because the F> term of
the expansion has a negative sign. In contrast, our numeri-
cal results display a slightly positive O(F?) term. One can
qualitatively understand this behavior by taking into account
that in the theoretical ansatz ao is regarded as a force inde-
pendent quantity. Especially at higher forces, one could ex-
pect that the diffusive length increases with increasing force
as well (see also below). Unfortunately, one cannot immedi-
ately identify a specific length, which displays the expected
behavior to quantitatively reproduce the nonlinear growth of
the particle displacement. Thus, we see that the spatial aspects
of the hopping behavior at large forces cannot be described by
this simple approach of equidistant minima.

In any event, the key conclusion from this analysis is
the smallness of the nonlinear increase. Even at the low-
est temperature and highest force, it is smaller than a factor
of 1.25. As a conclusion, the spatial part of the drift veloc-
ity comes with a distinct linear and a very weak nonlinear
response.

Concerning the temporal part, we show the waiting time
distribution ¢(7) in Fig. 5. In the case of small forces, the dis-
tribution of waiting times does not change so that the curves
collapse as expected for the linear response regime. Indeed,
in case of higher forces, long waiting times do not occur any
more so that the distribution functions decay faster. This has
major consequences for the average waiting time (t) (see
Fig. 6): while for small forces, (r) stays constant, one can
observe a drop for forces higher than a critical force. We char-
acterize the critical behavior of the temporal part by determin-
ing the critical force of the inverse average waiting time 1/(t),

107
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FIG. 5. Distribution of MB waiting times 7 during one MB transition at a
temperature 7 = 0.475.

Reprint 23-1: Microrheology of Supercooled Liquids

10°
A * +
e 4! +
X X XX x i +
* * X X X x x
10° *
3] ] B B B B @
10°
F

FIG. 6. Average waiting times () as a function of external forces F.

which is the relevant contribution to the drift velocity (see Eq.
(5)). It turns out, that the critical force Fc_% is identical to
F. . This fact underlines the major inﬂuencé of the temporal
part to the nonlinear behavior of the drift velocity. For further
discussion in Sec. III D, we will thus not distinguish between
these critical forces and restrict our analysis on F 1.

The transition to the nonlinear regime of v can be re-
garded as a direct consequence of the nonlinear behavior of
(7). The observations of the different force dependencies of
the spatial and the temporal part interestingly illustrate that
the discretization of the trajectory in the MB approach also
leads to a decomposition of linear and nonlinear contributions
to the drift velocity: In case of small forces, (t) stays constant
so that the linear response can be completely related to the
spatial part. The nonlinear regime, however, is governed by a
decay of the average waiting time.

On a qualitative level, this picture agrees with the idea
of linear response theory as applied to a simple 1D cosine-
potential. Naturally, (Ax;) is proportional to the force in the
linear regime. Thus, any variation of the waiting times, e.g., to
amodification of the barriers, gives rise to higher-order effects
in the resulting mobility. Stated differently, the nonlinearity
mainly reflects the modification of the underlying PEL upon
application of a large external force.

C. Diffusion in CTRW terms

As it was already mentioned above (see Eq. (6)), the one-
dimensional diffusion constant in equilibrium of a single par-
ticle is given in CTRW terms as the ratio of the isotropic
diffusive length a? and the average waiting time (t). Going
towards driven system, one has to distinguish between the
diffusive processes parallel and perpendicular to the force di-
rection, which were characterized by the diffusion constants
Dy and Dy, respectively. Because (r) is a universal quantity,
expected differences between parallel and perpendicular dif-
fusion are related to the anisotropy of the respective length
scales. In analogy to Eq. (7), we define the length scale in

. =
perpendicular direction a7 as

2 g (L) — x(0)h)
aj = lim —————

n—o00 n

10
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FIG. 7. Diffusive length scales aﬁ (two upper lines) and ai (two lower lines)
of the tracer particle parallel and perpendicular to the force direction as a
function of the external force F.

and the parallel length scale aﬁ as

& = lim (1) = x)(0))»)

n—00 n

— (Ax)> (11)

Please note that in the latter definition, the systematic
drift of the tracer particle along the force direction was sub-
tracted. The corresponding length scales are shown in Fig. 7.
One can observe that both, a7 and af, exhibit an increase with
increasing force, which is stronger for the parallel direction.
Interestingly, although a? and aﬁ are temperature indepen-
dent in equilibrium, corresponding to the linear regime, the
degree of nonlinearity strongly depends on temperature. As
already indicated above, one may expect that the PEL proper-
ties change in the nonlinear regime. Since these modifications
are expected to be strongly anisotropic, it is not surprising
that observables, defined parallel or orthogonal to the applied
force, may behave differently.

Dividing ui and uﬁ by 2(t) one obtains the parallel and
the orthogonal diffusion constants D and D, respectively.
Since the denominator is always the same, the different in-
crease of aﬁ as compared to a2 directly translates into the
corresponding relative increase of D as compared to D . Fur-
thermore, the weak force dependece of (Ax) directly trans-
lates into a weaker force dependence of the mobility as com-
pared to both diffusion constants. Actually, the observed rela-
tion Dy > D) > ;‘31_’1" (see Fig. 8) was already reported for the
lithium dynamics in a lithium silicate system.?' This suggests
that the force dependent anisotropy of the relevant length
scales is a general property of disordered systems.

The diffusion constant D can also be measured by fitting
the slope of the long-time limit of the mean-squared displace-
ment <xi(1)) perpendicular to the force direction. Indeed, this
is not possible for D because there one observes superdiffu-
sive behavior for intermediate times, as it was also reported
in Ref. 9, and diffusive behavior with a much higher diffu-
sion constant for long times, as it was predicted in Ref. 20,
especially when a strong force is applied. The origin of this
anomalous behavior can be traced back to the existence of dy-
namical heterogeneities, and can be quantitatively understood
in terms of the presented CTRW approach.?? In that frame-
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FIG. 8. Nonlinear responses of the diffusion coefficients parallel (D)) and
perpendicular (D) to the force direction and of the drift velocity v at a tem-
perature 7' = 0.475.

work, Dy describes the underlying diffusive processes, which
is superimposed by superdiffusive contributions.

D. Critical forces

Finally, it is of interest to compare the nonlinear response
of the different observables on a more quantitative level. Since
we are mainly interested in the onset of nonlinearity, an appro-
priate measure is the critical force as introduced in Eq. (4).
Here, we concentrate on aﬁ, ai, and 1/(t) as the key observ-
ables of the CTRW approach. The remaining variable (Ax;)
is omitted because its nonlinearity is extremely small. Fur-
thermore, the critical force of the drift velocity £ , is not dis-
cussed separately because, as it was mentioned above, it has
been found to be identical with F, 1.

In Fig. 9, all critical forces are shown as a function of
temperature. It can be seen that in general for a given tem-
perature each observable has a different critical force. Fur-
thermore, the temperature dependence varies quite signifi-
cantly. Whereas for the length scales the critical forces scale

0.5 0.6 0.7 0.8 0.9
T

FIG. 9. Critical forces Fy of different dynamical quantities X = aﬁ, ai,
and % The dashed lines indicate a behavior F¢ y o< T or rather F.x
o 723, Inset: F, Lasa function of ”TT“ with the equilibrium diffusion con-
stant Dy. The dashed line indicates a linear behavior.
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similarly to F..x oc 7', the critical force of the inverse waiting
time roughly scales like F, « oc T2,

A theoretical prediction about the onset of nonlinearity
can be found in Ref. 23. It was suggested by the authors that
linear response relation of the time-averaged dissipative flux
v in a driven system holds exactly when the steady state fluc-
tuation theorem

. pv=A)
lim ———

fim e = exp(ABF1) (12)

is fulfilled. From this condition, the scaling

Do
T

Fey 13)

has been derived in which Dy stands for the equilibrium dif-
fusion coefficient.” In the inset of Fig. 9, one can observe that
F, 1, and therefore naturally F., as well, fulfills the scaling
prediction.

IV. CONCLUSION

In the present paper, we have analyzed the dynamics
of a driven single particle in a supercooled liquid in terms
of a CTRW. In case of the drift velocity, the discretization
of the MB approach allows one to identify the temporal part of
the CTRW as the key source of non linear response, whereas
the spatial part only exhibits a weak positive contribution.
This positive contribution can be qualitatively understood
by the fact that the distances between adjacent MB increase
due to the application of higher forces. Since the finite-size
effects are small these results also reflect the origin of the
nonlinear response in the much larger system.

In terms of a CTRW analysis, we have been able to deter-
mine the relevant diffusive lengths of the tracer particle dif-
fusion along the directions parallel and perpendicular to the
force. Among others, this enables the definition of a parallel
diffusion constant, which is not directly accessible from real
space trajectories.”

The force dependencies of parallel diffusion, perpendic-
ular diffusion, and drift velocity are significantly different.
Thus, there is no general critical force, which designates a
mutual transition to a nonlinear regime. However, in terms of
dynamical quantities, one can regard the critical force of the
inverse waiting time as a key entity because of its relation to
the velocity (neglecting the minor nonlinear effects of the spa-

Reprint 23-1: Microrheology of Supercooled Liquids

tial part). For this quantity, one also observes the validity of
the theoretical scaling prediction by Evans et al.”*

This observation is of major conceptual interest because
the theoretical prediction is based on steady state fluctuation
arguments while the CTRW waiting time is determined by
the underlying PEL, i.e., by the distribution of minimum en-
ergies and saddle heights as well as the topography. Because
the waiting time decreases under the application of the ex-
ternal force, one can assume that the force dependence of at
least one of these distributions is responsible for this behavior.
It remains to be shown which specific variations of the PEL
give to the transition for linear to nonlinear dynamics.
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