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Microrheology of Supercooled
Liquids in Terms of a
Continuous Time Random
Walk

Carsten F. E. Schroer and Andreas Heuer

In this short note we compare the discretization of the dynamics of super-
cooled liquids in configuration space, using metabasins, with the discretization
in real space, using a distance criterion. It turns out that several observables,
such as waiting-time distributions, are rather similar. However, significant de-
viations are observed when applying an external force. It is argued that the
configuration space discretization is somewhat superior.Reprinted with permis-
sion from J Chem. Phys. 138, 12A518 (2013). Copyright 2013, AIP Publishing
LLC.”

23.1 Introduction

Since the continuous time random walk (CTRW) analysis presented in the orig-
inal article requires the minimization of structures concerning their potential
energy [1], it comes along with a rather high numerical effort. Therefore, the
important question emerges, whether a discretization of single particle trajecto-
ries in real space is also able to offer the same spatial and temporal information
as our potential energy landscape (PEL) approach.
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In literature, several approaches have been reported to discretize single
particle trajectories into stochastic events [2, 3, 4, 5, 6]. However, there were
major differences between the used protocols, especially, concerning the dis-
tance the particles have to travel until their motion is counted as a “transition”.
Furthermore, there are differences how the vibrational dynamics of the particles
is treated during the analysis. While in Ref. [2], motion is separated into low
displacement (i.e. vibrational) and high displacement (i.e. diffusive) events, the
vibrational part has been removed in Ref. [3] and Ref. [5] via integration of the
spatial distribution function [3] or rather averaging the trajectories in certain
time intervals [5].

Our aim was to develop a procedure to define real space transitions which
is close to the results we have obtained from our PEL analysis. Therefore, we
have adopted the averaging procedure from Ref. [5] which enables a suppres-
sion of thermal vibration and provides hopping-like trajectories, similar to the
athermal metabasin trajectories one obtains from the PEL analysis [1]. Since
there is a large variety of possibilities for how to define a spatial threshold, it
might be reasonable for a first guess to use the simplest criterion, which is that
a particle travels a distance d from its present position. This kind of criterion
was used, e.g. in Ref. [6]. It has been shown in Ref. [7] that the waiting-times
resulting from this type of discretization can very well reproduce the basic
properties of the PEL waiting-time distribution.

23.2 Computational Details

The analysis has been performed for the same binary Lennard-Jones liquids
that was studied in our original article. Please note, that we have restricted
our analysis to a temperature range above the computer glass transition, so
that no aging behavior is expected. As a first step, the real space trajectories
have been averaged over 200 structures, thus, reducing the local vibrations. Be-
cause we wanted to study the properties of a microrheologically driven system,
where the motion of the tracer particle is biased by an external force F , we
had to slightly modify the criterion for the definition of an event: We count a
transition to occur when the tracer particle either moves a distance +d along
or a distance −d against the force direction. If an event has taken places, the
current position of the tracer particle is defined as the starting point for the
next transition. The local waiting-time τ local is defined as the time between
two of these events. Please note, that we have not counted the time from the
beginning of the simulation to the first event, so our τ local is related to the
exchange times in Ref. [6]. The computed local waiting-times strongly depend
on the chosen local threshold d. To be as close as possible to the metabasin
analysis we chose a value for d = 0.01 for which we recover a distribution of
local waiting-times φ(τ local) which is, independent from temperature, in good
agreement with the distribution of metabasin waiting-times φ(τMB) for F = 0
(see Fig. 23.1).
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Figure 23.1: Distribution of local (crosses) and metabasin (squares) waiting-
times for T = 0.475 and T = 0.55 and no applied force.

23.3 Results

One of the central quantities we have studied in the original article was the
long-time velocity v of the tracer particle parallel to the force direction

v = lim
t→∞

x∥(t)− x∥(t0)

t− t0
(23.1)

where x∥ denotes the absolute position of the tracer particle along the force
axis. By discretizing the trajectory of the tracer particle into single events, v
decomposes into a spatial part ⟨∆x∥⟩ and a temporal part ⟨τ⟩

v =
⟨∆x∥⟩
⟨τ⟩

(23.2)

where ⟨· · ·⟩ denotes an average over a large number of single events. In our
original article we have identified ⟨∆x∥⟩ with the average displacement of the
tracer particle parallel to the force direction during one metabasin transition
and ⟨τ⟩ with the average metabasin waiting-time. In the following we will write
⟨∆xMB

∥ ⟩ or rather ⟨τMB⟩ if we refer to the quantities resulting from the MB
discretization.

For the local events one can also obtain the spatial and temporal quantities
of Eq. 23.2, however, there are some qualitative differences. While the temporal
part results from a distribution function φ(τ local) which is, at least without an
applied force, similar to the metabasin distribution (see Fig. 23.1), the spatial
part is obtained by

⟨∆xlocal∥ ⟩ = d · #Events(+)−#Events(−)

#Events(+) + #Events(−)
(23.3)

where #Events(+) denotes the number of events along, #Events(−) the num-
ber of events against the force direction and d the chosen radius (compare
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Figure 23.2: Upper panel. Drift velocity v divided by force F at T = 0.475. The
dashed line indicates the linear response regime up to a the critical force Fc,v

(see text). Middle panel. Average spatial displacements ⟨∆xMB
∥ ⟩ and ⟨∆xlocal∥ ⟩

divided by force F at T = 0.475. The dashed line indicates the linear response
regime up to a the critical force Fc,∆x (see text). Lower panel. Average waiting
times ⟨τMB⟩ and ⟨τ local⟩ at T = 0.475. The dashed line indicates the linear
response regime up to a the critical force Fc, 1τ

(see text).

Sec. 23.2). This means, that in contrast to the MB quantity, ⟨∆xlocal∥ ⟩ results

from a bimodal distribution and is restricted to a range of [−d,+d]. This also
means, that the choice of d also determines the outcome of the analysis, how-
ever, since φ(τ local) is close to φ(τMB) (see Fig. 23.1) and Eq. 23.2 is valid, also
the average ⟨∆xlocal∥ ⟩ must be close to ⟨∆xMB

∥ ⟩.
The resulting average values are shown in Fig. 23.2. For ⟨∆xMB

∥ ⟩ and

⟨τMB⟩ one observes the interesting fact that linear and nonlinear response are
nearly exclusively decomposed: while ⟨∆xMB

∥ ⟩ stays linear for almost the whole

range of forces, ⟨τMB⟩ is constant for very low forces and displays a decay at
intermediate forces. As it can be observed in comparison to the upper panel
of Fig. 23.2, this decay coincides with the onset of nonlinear behavior of the
velocity v. This behavior becomes more obvious by comparing the critical forces
Fc,X at which the dynamical response of quantity X differ more than 10% from
the expected linear response value: While Fc, 1τ

and Fc,v are identical, Fc,∆x

differs about a factor of three form this value.
For the average values resulting from the real space discretization, the

situation appears different. Although one also notice a relation between the
linear response and the spatial part, there is no hint to apportion the nonlinear
response only to ⟨τ local⟩. At the force where one observes a decay of ⟨τ local⟩, one
finds a similar decay of ⟨∆xlocal∥ ⟩/F as well. The full decomposition of linear
and nonlinear response which we have broadly discussed in our original article
can, therefore, not be reproduced by the local discretization.

This result is some kind off drawback because it suggests that studying the
onset of nonlinearity in driven systems requires, by using the depicted protocol,



23.4. Conclusion 463

the analysis of both, spatial and temporal contributions. For the metabasin
analysis indeed, only the study of the temporal part seems sufficient, which can
be directly linked to the properties of the underlying PEL.

23.4 Conclusion

In this article we tried to prove, whether it is possible to regain the results of
the metabasin analysis performed in “Microrheology of supercooled liquids in
terms of a continuous time random walk” by applying a real space discretiza-
tion procedure. The procedure was inspired by previous work in literature and
turned out to recover reasonable results for equilibrium systems [7]. In contrast
to undriven systems it turns out, that the real space discretization applied on
microrheologically driven systems offers not identical result but unfortunately
cannot recover the decomposition of linear and nonlinear contributions. On the
other hand this observation emphasizes, that the results which can be obtained
by our PEL approach do not just recover trivial effects one could also gain with
any arbitrary protocol but allows one a different perspective on the physics of
driven glassy systems.
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