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The Puzzle

“At high enough strains, amorphous solids undergo plastic failure
via spontaneous strain localization along a shear band, the
direction of which depends strongly on loading protocols.”

Bending experiment1 on a plate of Zr52.5Al10Ti5Cu17.9Ni14.6

1Y. F. Gao et al, Acta Materialia (59) 4159 (2011)



Plan of the talk

I Numerical simulations.

I Atomistic theory of plastic deformation.

I Comparison with simulations & experiments.

I Summary & road ahead.



Model glass former used

I Binary Lennard-Jones system:

U(r) = 4εαβ

[(
λαβ
r

)12

−
(
λαβ
r

)6]
εαβ and λαβ are chosen for quasi-crystalline1 ground state.

1M. Widom, K. J. Strandburg, and R. H. Swendsen, PRL (58), 706 (1987)



Cooling a liquid into glass

I Degree of disorder depends on cooling rate.

Motifs are colored yellow and defects colored magenta.

I Such slow quenched glasses deform via shear bands!



Cooling a liquid into glass

I Degree of disorder depends on cooling rate.

Motifs are colored yellow and defects colored magenta.

I Such slow quenched glasses deform via shear bands!



Deformation at zero temperature

I Take both athermal (T → 0) & quasi-static (γ̇ → 0) limits.

I From mechanical equilibrium, each particle moves as

rnew
i = rold

i + δγyold
i x̂︸ ︷︷ ︸

affine step

+ ui︸︷︷︸
non-affine step

I ui is necessary to restore equilibrium in amorphous materials.

I This also guarantees: v︸︷︷︸
non-affine velocity

= − H−1︸︷︷︸
Inverse Hessian

· Ξ︸︷︷︸
affine force
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Elementary plastic instability

I At some γ = γp, a saddle point emerges.

I The lowest eigenvalue vanishes via: Λp ∼
√
γp − γ.

I Corresponding wave-function gets localized.

γ

σ

We are now in a position to observe the deformation experiments.
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Uniaxial deformation
Instability

I Strain localizes into thin regions or shear bands.

I Angle θ w.r.t principal axis is higher in extension.

(a) Compression: θ = 46o (b) Extension: θ = 54o

Next we will construct a theory for both these asymmetries.
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Gedanken experiment of Eshelby (1957)
Elastic field due to an inclusion
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Characteristics of Eshelby inclusion

I Eigenstrain tensor

ε∗αβ = ζnn̂αn̂β + ζk k̂αk̂β

I ε∗ηη 6= 0 as volume is allowed to change.

I In general, the ratio ζn/ζk depends on loading protocols.

I ζn/ζk uniquely determines the shear-band angle.
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Mathematical procedure

I Both solutions matched at the inclusion boundary:

uc(X) ≡ uc(ζn, ζk , λ, µ, a, n̂,X)



Energy contributions

To calculate the total energy we must calculate

Emat =
1

2
σ∞αβε

∞
βαV ”Energy of the strained matrix”

E∞ = −1

2
σ∞αβ

N∑
i=1

ε∗,iβαV i
0 ”Energy of inclusions”

Eesh =
1

2

N∑
i=1

(σ∗,iαβ − σ
c,i
αβ)ε∗,iβαV i

0 ”Self energy required to create the inclusions”

Einc = −1

2

N∑
i=1

ε∗,iβαV i
0

∑
j 6=i

σc,j
αβ(r ij) ”Interaction energy between inclusions”

The total energy of N such inclusions is thus

E = Emat + E∞ + Eesh + Einc
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Orientation of shear bands
Prediction requires minimizing energies

I From ∂E∞
∂φ = 0, we get orientation of each inclusion

φ = 0o or π/2

I Putting ∂Einc
∂θ = 0, we find the shear band angle

θ = cos−1

√
1

2
− 1

4

(ζn + ζk)

(ζn − ζk)

I For volume conserving deformation such as pure shear

θ = 45o , as ζn = −ζk

I Any other loading condition will realize a different angle!
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Calculating the angle

To calculate θ, we need the ratio ζn/ζk

(a) Compression (b) Extension

|ζn /ζk | ∼1.15

|ζn /ζk | ∼4.05

Plugging the observed values of ζn/ζk in the angle formula:

θ ≈ 460 for compression

θ ≈ 540 for extension

1A J., O. Gendelman, I. Procaccia and C. Shor, PRE (88) 022310 (2013)
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Limiting cases
Agreement with experiments

I The two limiting cases result from our prediction

θ = 300 for the case |ζn/ζk | → 0

θ = 600 for the case |ζn/ζk | → ∞
I Available experimental data conform to this prediction



Conclusions

I Shear band angle θ is larger in extension.

I Our theory captures these asymmetries through the
characteristics of Eshelby inclusions.

I Loading protocols which conserve volume lead to θ = 45o .

I Any other protocol will realize a different angle.

I In our theory θ is limited to lie between 30o − 60o .

I Available experimental data conform to this prediction.
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Future Work

I The present atomistic theory is valid in limits γ̇ → 0,T → 0.
I We would like to include:

I finite temperature effects, T 6= 0.
I finite strain rate effects, γ̇ 6= 0.



Thank You.


