Specific Heat of Supercooled Water: Coupled hierarchical relaxation and Glass Transition

Biman Bagchi Solid State and Structural Chemistry Unit Indian Institute of Science

Difference between Isobaric (C_p) and **Isochoric (C**_v) specific heats

For normal liquids, $C_p = C_v$ at all Temperatures (in the liquid state)

NOT FOR WATER in the SUPERCOOLED STATE! Why? Role of volume fluctuations ! Speedy and Angell (1975)

Thermodynamics of liquid water

- ✓ Anomalous thermodynamic properties:
 - high melting and freezing points, density maximum at 4 °C, . . .
- ✓ Three-dimensional (tetrahedral and strong) hydrogen bond network
- ✓ Enhancement of anomalies in supercooled state
 - decrease in density down to \sim -40 °C

Water

Typical liquid

compressibility

Isothermal

- significant changes (look like diverge) in $\kappa_{\rm T}$, $\alpha_{\rm P}$, and $C_{\rm P}$

expansivity

Thermal

Typical liquid

Water

Anomalous temperature dependence of C_P of water

Sharp increase in C_P in supercooled state

- The absence of a sharp increase in C_v in water (is considered)
- The absence of an increase in C_P in simple liquids and alcohols

Molecular origin of increase in *C*_P **of supercooled water**

- Difference between liquid structure and dynamics under two, i.e. constant pressure and volume, conditions
- Time- and length-scales of motions involved in anomalous temperature dependence of $C_{\rm P}$

Expression for frequency dependent specific heat

The temperature fluctuation time correlation function given by $K(t) = N < \delta T(0) \delta T(t) / T^2$

By using the Fourier-Laplace transform of the time derivative of *K*(*t*), *K*(*t*), *the specific heat is expressed as*

 $C = [1/N_f + K(0)]^{-1}$

By generalizing the static specific heat given i to the frequency dependent specific heat,

 $C(\omega) = [1 / N_f + K(\omega)]^{-1}$

Results of MD simulations

- $C_{\rm P} \sim C_{\rm V}$ at T > 230 K
- Sharp increase in C_P at ~ 230 K
- Maximum of $C_{\rm p}$ at ~ 220 K
- Decrease in C_v at T ~ 230 K
 Model for water: TIP4P-2005

Saito, Ohmine, & Bagchi, JCP **138**, 094503 (2013).

Temp. dep. of calculated ρ and $d\rho/dT$

- Sharp decrease in density 210 K < T < 230 K
- $T_{\text{Max of } d\rho/dT} \sim T_{\text{Max of } Cp}$

Change in dynamics caused by decrease in density is involved in change in $C_{\rm P}$.

Complex specific heat: 'Specific heat spectroscopy'

- $\hat{C}_{P}(\omega)^{\sim}\hat{C}_{V}(\omega)$ for all ω at T > 230 K
- Difference between $\hat{C}_{P}(\omega)$ and $\hat{C}_{V}(\omega)$ for $\omega < 1 \text{ cm}^{-1}$, i.e. HB network dynamics, at T < 230 K

Two differences between $\hat{C}''_{P}(\omega)$ and $\hat{C}''_{V}(\omega)$

- Peak frequency: $\omega_{HBN} < \omega_{HBN}$
- Peak intensity: $\hat{C}''_{P}(\omega_{HBN}) > \hat{C}''_{V}(\omega_{HBN})$

Saito, Ohmine, & Bagchi, JCP 138, 094503 (2013).

Quantification of contribution of motions to $\Delta C (\equiv C_P - C_V)$

$$\begin{split} C_{\rm P} - C_{\rm V} &= \hat{C}_{\rm P}'(0) - C_{\rm V}'(0) \\ &= \frac{2}{\pi} \int_0^\infty \left(\frac{\hat{C}_{\rm P}''(\omega)}{\omega} - \frac{\hat{C}_{\rm V}''(\omega)}{\omega} \right) d\omega \\ &\sim \frac{2}{\pi} \int_{\rm HBN} \left(\frac{\hat{C}_{\rm P}''(\omega)}{\omega} - \frac{\hat{C}_{\rm V}''(\omega)}{\omega} \right) d\omega \end{split}$$

- Difference between C_P and C_V
- Difference between HB network dynamics under two conditions

Length-scale of temperature fluctuation in $\boldsymbol{C}_{\boldsymbol{P}}$

Relative shell-wise contribution to temperature fluctuation caused by HB network dynamics At 300 K, ~80 % from the 1st shell At 230 K, only 20 % from the 1st shell

Growth of spatially correlated dynamics

Temperature dependence of liquid structure

pressure condition

10

3

2

Wave number k / A^{-1}

0

Spatio-temporal scales of temperature fluctuation in $\ensuremath{C_{P}}$

- Decoupling between intermolecular motions and HB network dynamics
- Contribution of 1st shell to temp. fluct. at ω_{HBN} ~10%
- Increase in contribution of outer-shells
- Emergence of correlated HB dynamics

- Strong coupling between intermolecular motions and HB network dynamics
- Fast energy dissipation
- Contribution of 1st shell to temp. fluct. at ω_{HBN} ~80 %

Temperature dependence of local density fluctuation

250 K

Red (blue) cubic : a region with high ratio of liquid-like (ice-like) molecule

Percolation of ice-like molecules

Large local density fluctuation

Ice-like molecule: A 4-coordinated molecule which is coordinated to four 4-coordinated molecules **Liquid-like molecule**: otherwise

Temp.-dep. of size-distribution of

- ✓ Large clusters of liquid-like molecules at T > 250 K
- ✓ Percolation transition of clusters of liquid-like molecules at ~ 220 K
- ✓ Emergence of large clusters of ice-like molecules at T
 < 220 K

FRAGILITY CROSS-OVER IN C_P

- Non-Arrhenius behavior (= fragile liquid)
- Two Vogel-Fulcher-Tamermann equations (markedly and weakly fragile liquids)
- Transition from a fragile liquid to a weakly fragile (or strong) liquid at ~220 K
 Significant differences in structure, dynamics, and thermodynamics between two fragile liquids
- $T_{\rm VFT}$ = 173 K (in weakly fragile liquid) ~ $T_{\rm glass\,trans.}$ proposed by Angell*

Temperature dependence of relaxation times

Similar to temp-dep. of HB network dynamics involved in *C*_P

- Non-Arrhenius behaviors
- 'Fragile-strong' transition at ~ 220 K

*Zhang et al, PRE **79**, 040201(R) (2009).

Torre et al., Nature **428, 296 (2004).

Local density fluctuations under two conditions

Constant pressure condition

Percolated liquidlike molecules

Large local density fluctuation

Percolated ice-like molecules

Constant volume condition

The presence of clusters of liquid-like molecules (locally disorder high density region) even at very low temperatures Percolation transition of cluster of locally high density molecules at ~ 220 K

Significant difference in structure between two conditions, though $C_P \sim C_V$ at very low temp.

Large difference between HB network dynamics involved in C_P and C_V

- Unclear 'fragile-strong' transition under constant volume condition
- Difference in structure, dynamics, and thermodynamics of HB network dynamics between constant P. and constant V conditions
- Difference in energy landscape between two conditions

Water Freezes at 232K!

• LDL-HDL critical point suspected 220-230K!

In the Search for a Glass Transition

- There are several outstanding controversies about the temperature of glass transition, if any
- Amorphous ice is stable up to 155K beyond which it is known to undergo crystallization

Static/dynamic heterogeneity

Jana, Singh and Bagchi, PCCP (2012)

Dynamic Heterogeneity : Non-linear response function, χ_4 (t)

Distribution of Q(t)

23

Temperature vs. relaxation time

scattering function

Relaxation time of temperature fluctuation

Two inflection points and three domains

Temperature vs. density

Temperature vs. coupling of rotational and translation motion

Fractional Stokes-Einstein behavior above 220K
Stokes-Einstein behavior recovered below 190K

Inherent structure energies and the corresponding distance matrices, at constant pressure

Inherent structure energies and the corresponding distance matrices, at constant volume

Distribution of IS energy

Temperature vs. average IS energy

Sharper fall for the constant pressure conditions

Specific heat obtained from IS

Sharper rise below 250K under constant pressure conditions

Time scale of HB network dynamics is several hundred

•Analysis of 'fragile-strong' transition based on threetime correlation function*

- Preliminary theory of ice nucleation
- •Glass transition around 170 K.

 $\hat{C}''_{P}(\omega)$

 10^{-2}

220K

10-4

 $\hat{C}''_{V}(\omega)$

 10^{2}

 10^{0}

Wavenumber / cm⁻¹

 $1000/T / K^{-1}$

Summary

ps ~ several ns at 220 K

temperature

Anomalous temperature dependence of $C_{\rm P}$ of water

Emergence of correlated dynamics with decreasing

• Slowing-down of HB network dynamics in $C_{\rm p}$

Acknowledgements

- ✓ S. Saito, I. Ohmine, and B. Bagchi, *J. Chem. Phys.* **138**, 094503 (2013).
- ✓ S. Saito and B. Bagchi, PCCP (ENERGY LANDSCAPE SPL ISSUE)

Prof. Shinji Saito Prof. Iwao Ohmine

Dr. Mantu Santra

Dr. Rakesh Sharan Singh

Indo-Japan research grant

OSTWALD STEP RULE

Temperature dependence of local density fluctuation

220-230 K

Percolation of ice-like molecules

Large local density fluctuation

Percolation of liquid-like molecules

Ice-like molecule:

a 4-coordinated molecule which is coordinated to four 4-coordinated molecules Liquid-like molecule: otherwise

- Large clusters of liquid-like molecules at T > 250
 K
 - Percolation transition of clusters of liquid-like molecules at ~ 220 K
 - Emergence of large clusters of ice-like molecules at *T* < 220 K

Percolation-like transition of liquid-like cluster

Liquid-like molecule: A molecule which has at least one 3- or 5-coord. Molecule within its 1st hydration shell

Temperature dependence of 2D IR and Raman spectra

Spectra of **electric field parallel to OH stretch** (related to 3-pulse IR PE of OH stretch)

Emergence of correlated dynamics

by examining different spectroscopic method because of the difference in their correlation lengths

At Equilibrium : $\delta F = \int dz \eta(z) F(\eta(z)) + \frac{1}{2} K \int dz \left(\frac{\partial \eta(z)}{\partial z}\right)^2$

Case of one metastable intermediate phase

Nucleation of ice – wetting of Ice by LDL within HDL

Density functional theory

Free energy surface

Free energy surface

Nucleation barrier

