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Difference between Isobaric (C,) and
Isochoric (C,) specific heats

For normal liquids, Cp = C, atall Temperatures (in
the liquid state)

NOT FOR WATER in the SUPERCOOLED STATE!

Why?
Role of volume fluctuations!
Speedy and Angell (1975)
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Thermodynamics of liquid water

v' Anomalous thermodynamic properties:
— high melting and freezing points, density

maximum at 4 °C, ...

v' Three-dimensional (tetrahedral and strong)

hydrogen bond network

v" Enhancement of anomalies in supercooled state
— decrease in density down to ~ -40 °C
— significant changes (look like diverge) in k, ap,

and Cp
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No consensus about what causes thermodynamic anomalies

Limited our understanding of molecular origin of anomalies
Spectroscopic analyses by Chen, Righini, Tokomakoff, Hamm, ...




Anomalous temperature dependence of
C, of water

120 lfn\ N Exp-tl. 1 | Sharp increase in Cp in supercooled state
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Molecular origin of increase in C, of supercooled water

* Difference between liquid structure and dynamics under two, i.e. constant
pressure and volume, conditions

* Time- and length-scales of motions involved in anomalous temperature

dependence of C;
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Expression for frequency dependent
specific heat

The temperature fluctuation time correlation function given by

K(t)= N <&T (0) 8T (t)/ T?

By using the Fourier-Laplace transform of the time derivative
of K(t), 'K(t ), the specific heat is expressed as

C=[1/N, +K(0)]"

By generalizing the static specific heat given i to
the frequency dependent specific heat,

C(w)=[1/N; +K(w)] ™
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Results of MD simulations

Temp. dep. of calculated C, and C,,
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Temperature | K

¢ Cp~Cy a.lt T> 230_ K « Sharp decrease in density
 Sharp increase in Cp at ~ 230 K 210 K< T<230K

* Maximum of C; at ~ 220 K T T

. Decrease in CV at T~ 230K Max of dp/dT Max of Cp

Model for water: TIP4P-2005 Change in dynamics caused by decrease

Saito, Ohmine, & Bagchi, JCP 138, 094503 (2013).  in density is involved in change in C,.
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Complex specific heat: ‘Specific heat
spectroscopy’
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Quantification of contribution of
motions to AC (=Cp-Cy)
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Length-scale of temperature fluctuation
in Cp

é 10 Relative shell-wise contribution to temperature
3 o8t i fluctuation caused by HB network dynamics
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Growth of spatially correlated dynamics
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Temperature dependence of liquid

structure
Tetrahedrality Volume of Voronoi polyhedra
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* No large difference at T > 230 K

* Clear difference at T< 230 K

— Growth of tetrahedral structure caused by
decrease in density under constant
pressure condition

Static structure factor

S(k)

-M
4%595f///ﬁ\"//ﬂ\\““
ok A

Voronoi volume / A3

205K
0 1 2 3 4

Wave number k / A_1

10



Spatio-temporal scales of temperature
fluctuation in C,

| K(w,k) [ /S(k)

s 3010“"1 107 107 107" 10" 10" 107
10* 107 107 10" 10° 10" 10
w/cm w/cem’ w/cm’

= Decoupling between intermolecular = Strong coupling between

motions and HB network dynamics intermolecular motions and HB
» Contribution of 15t shell to temp. fluct. at network dynamics

wypy ~10% = Fast energy dissipation
* Increase in contribution of outer-shells = Contribution of 15t shell to temp.
= Emergence of correlated HB dynamics fluct. at wygy ~80 %




Temperature dependence of local
density fluctuation

Red (blue) cubic : a region
with high ratio of liquid-like
(ice-like) molecule

205K 220-230K 250K

Percolation of Large local density  Percolation of
ice-like molecules fluctuation liquid-like molecules

Temp.-den. of size-distribution of Ice-like molecule: A 4-coordinated molecule which is
clusl’zérs é)f liquid-like molecules coordinated to four 4-coordinated molecules
10° - ‘ . Liquid-like molecule: otherwise

v’ Large clusters of liquid-like molecules at T> 250 K

v Percolation transition of clusters of liquid-like
molecules at ~ 220 K

v" Emergence of large clusters of ice-like molecules at T
<220K

Size distribution
=
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Cluster size
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FRAGILITY CROSS-OVER IN G,

1
Weakly fragile liquid
(Jclose to strong liquid)

*Velikov et al. Science 294, 2335 (2001).

3.5 40 45 5.0

1000/T/ K~

* Non-Arrhenius behavior (= fragile liquid)

* Two Vogel-Fulcher-Tamermann equations (markedly and weakly fragile liquids)
* Transition from a fragile liquid to a weakly fragile (or strong) liquid at ~220 K
Significant differences in structure, dynamics, and thermodynamics between two
fragile liquids

* Typy = 173 K (in weakly fragile liquid) ~ Tg,55 ¢rans, Proposed by Angell*




Temperature dependence of relaxation

times
1 05 i ' ' ' ' ' .y
1 04 | Self term of ISF (calc:) 4  Similar to temp-dep. of HB network
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Local density fluctuations under two

Constant pressure condition -
- . 240120
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Temperature | K

Percolation transition of cluster of

locally high density molecules at ~
220K

Significant difference in structure

' ‘ between two conditions, though C,
The presence of clusters of liquid-like molecules

: : : . ~ Cy at very low temp.
(locally disorder high density region) even at very
low temperatures




Large difference between HB network
dynamics involved in C; and C,
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* Unclear ‘fragile-strong’ transition under constant volume condition

 Difference in structure, dynamics, and thermodynamics of HB network
dynamics between constant P. and constant V conditions

 Difference in energy landscape between two conditions




Water Freezes at 232K!

= LDL-HDL critical point suspected 220-230K!

RAKESH S SINGH




In the Search for a Glass Transition/

= There are several outstanding controversies
about the temperature of glass transition, if
any

= Amorphous ice is stable up to 155K beyond
which it is known to undergo crystallization
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Static/dynamic heterogeneity
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Time / ps
Jana, Singh and Bagchi, PCCP (2012)




Dynamic Heterogeneity : Non-linear
response function, y, (t)
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Distribution of Q(t)

Distribution

Distribution

Distribution of TCF of Q(t)
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Temperature vs. relaxation time
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v'Two inflection points and three domains




Temperature vs. density

1.00
"-’E v'Maximum at 277K
G 0.98
z v'Minimum at 190k
72 0.96
Q
a
0.94 |

175 200 225 250 275 300
Temperature / K




Temperature vs. coupling of rotational
and translation motion
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sEFractional Stokes-Einstein behavior above 220K
sStokes-Einstein behavior recovered below 190K




distance matrices, at constant pressure
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Inherent structure energies and the corresponding
distance matrices, at constant volume
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Distribution of IS energy
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Temperature vs. average IS energy
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Summary

Anomalous temperature dependence of C, of water

} 120 | Calculated |
» Slowing-down of HB network dynamics in C, g C,
= 100 |
*Time scale of HB network dynamics is several hundred i
ps ~ several ns at 220 K m o
 Emergence of correlated dynamics with decreasing 200 25 250 275 30
Temperature | K
temperature '
*~6'" hydration shell consisting of ~340 water molecules " [220k () o
20 | A
» Transition from fragile liquid to weakly fragile (or strong) A<xLw) S\
liquid at ~ 220 K 104 10 100 107
Wavenumber / cm!
*Typr in the low-Temp branch ~ Ty, ; proposed by Angell
etal 4
*Analysis of ‘fragile-strong’ transition based on three- .| ConstP
time correlation function* £
* Preliminary theory of ice nucleation e
ConstV
*Glass transition around 170 K. 10" L2

35 40 45 50
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Temperature dependence of local
density fluctuation

Ice-like molecule:

a 4-coordinated molecule
which is coordinated to

four 4-coordinated molecules

Liquid-like molecule:

otherwise
TV BRI o g
Percolation of Large local density = Percolation of
ice-like molecules fluctuation liquid-like molecules

Temp. dep. of size-distribution of
clusters of liquid-like molecules
10°

= Large clusters of liquid-like molecules at T > 250
K

= Percolation transition of clusters of liquid-like
molecules at ~ 220 K

Size distribution

= Emergence of large clusters of ice-like molecules
atT<220K

1 10 100 1000
Cluster size




Percolation-like transition of liquid-like
cluster

Distributions of ice-like clusters

Distributions of liquid-like clusters .
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Liquid-like molecule:

A molecule which has at least
one 3- or 5-coord. Molecule
within its 15t hydration shell

Relative population
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Temperature dependence of 2D IR and

Raman spectra
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Spectra of electric field parallel to OH
stretch (related to 3-pulse IR PE of OH
stretch)

Emergence of correlated dynamics

by examining different spectroscopic method
because of the difference in their correlation
lengths
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Phase 1

Phase 2
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Case of one metastable intermediate
phase
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Nucleation of ice - wetting of Ice by LDL
within HDL Bl

Density functional theory

Melt

Melt

Free Energy

M1
SS

Structure

Santra, Singh and Bagchi, JPC (Wolynes Festchrift, 2013)




Free energy surface
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Free energy surface
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Nucleation barrier
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