

photo ; Alain Jeanne-Michaud

The LiCI-RH₂O and LiBr-RH₂O Supercooled Solutions close to their Eutectic Composition

A tribute to C. A. Angell and K. A. Nelson

L. E. Bove, C. Dreyfus, R. Torre, R. M. Pick,

Outline

 Introduction
II Transient Grating, a recap
III The R=6 case
IV The 6<R<7.2 LiCl case and its Interpretation
V Questions for the future

I Introduction The water no man's land

The <u>equilibrium</u> and <u>non equilibrium</u> phase diagrams of LiCI- R H₂O

II Transient Grating, a recap

Signal $\approx \delta n(\breve{q}_0,t) \approx \delta \rho(\breve{q}_0,t)$

Instantaneous Heating and Electrostriction $\Delta T(\breve{r},t) = \Delta T_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})]$ $\Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{q}_0.\breve{r})] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{r},t)] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{r},t)] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{r},t)] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{r},t)] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{r},t)] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{r},t)] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{r},t)] \leftarrow \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{r},t)] \to \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) [1 + \cos(\breve{r},t)] \to \Delta P(\breve{r},t) = \Delta P_0 \,\delta(t) = \Delta$

Typical HD-TG signal

III Experimental results on LiBr-6H₂O

α and β Relaxation Times

« Zero » and « infinite » frequency s sound velocities

« Zero » frequency sound velocity

IV LiCI-RH₂O for 6<R<7.2 Experiments and Interpretation

The Experimental Results

The Signals

The Extra Signals

R=6.66 - Temperature Evolution

The Physical Explanation

SIGNALS TO BE FITTED

5 Temperatures: 190 K≥T≥172 K

2 R values: R=6.66 and R=7.14

4 q values at T=181 K

Modelisation and Corresponding Results

$$\Delta T(\mathbf{r}, \mathbf{t}) = \left(\Delta T_0 \,\delta(\mathbf{t}) - \frac{\Delta T_a}{\tau_a} \exp\left(-\frac{t}{\tau_a}\right)\right) (1 + \cos q_0 \mathbf{r})$$

- τ_a (cluster lifetime) \approx 4 τ_{α} (α relaxation time)

- The signal decay is due to a diffusion mechanism of the H₂O molecules
- Size of clusters \approx 2.5 nm

Size and Composition of the clusters are Temperature and R independent

Examples of fits

Fit of the T=184 K extra signal

Fit of the T=181 K extra signal

V Questions for the Future

1) Have we other evidences ?

2) - What is the cluster composition?- Are the clusters static or dynamics?

3) Is LiCI-RH₂O a unique case?

b) The <u>new</u> source term in the Energy Conservation equation and its consequence Usual case: $\Delta T(\vec{r},t) = \Delta T_0 \delta(t) [1 + \cos(\vec{q},\vec{r})]$ **R-6 case:** $\Delta T_0 \delta(t)$ is changed into: $\Delta \mathbf{\tilde{T}}(t) = \left(\Delta \mathbf{T}_0 \, \delta(t) - \left| \frac{\Delta \mathbf{T}_a}{\tau_a} \exp \left(- \frac{t}{\tau_a} \right) \right| \right) \implies$ $\delta \rho(\mathbf{q}, \omega) = \mathbf{P}_{L}(\mathbf{q}, \omega) \left[\frac{1}{1 + i\omega\tau_{h}} + \frac{\Delta \overline{\mathbf{T}}_{a}}{\Delta \overline{\mathbf{T}}_{1}} \frac{1}{1 + i\omega\tau_{a}} \right] \Delta \overline{\mathbf{T}}_{1}$ $\Delta \overline{T}_{a} = \frac{\Delta T_{a}}{1 - \tau_{a} / \tau_{h}} ; \quad \Delta T_{1} = \Delta T_{0} - \Delta T_{a}$

Typical HD-TG signal

b) Analysis of the experiments

5 Temperatures: 190 K≥T≥172 K

2 R values: R=6.66 and R=7.14

4 d values at T=181 K

⇒ Size is approximately T independent, ≈ 2.5 nm

- Perfect scaling between R=6.66 and R=7.14

⇒ Only the cluster density increases with R

 $-\frac{\Delta \overline{T}_{a}}{\Delta T_{1}} \text{ or } \frac{\Delta \overline{T}_{a} + \Delta \overline{T}_{b}}{\Delta T_{1}} \text{ approximately T independent} \\ \Rightarrow \text{ Cluster composition approximately constant}$

Recap, next

1) $\Delta T(\check{r},t) \Rightarrow \Delta P(\check{r},t) \Rightarrow$ Two longitudinal phonons \check{q} and $-\check{q} \Rightarrow$ **Density grating**: $\delta n(\check{r},t) = \delta n_0(t)[1 + \cos(\check{q}.\check{r})]$

2)After the phonon decay, the density goes on equilibrating with the temperature grating \Rightarrow increase of the density grating

3) The temperature grating decreases by thermal diffusion \Rightarrow decay of the related density grating: $\delta n(\vec{r},t) = \delta n_1 \exp(-t/\tau_h)[1 + \cos(\vec{q}.\vec{r})]$

¤ T∙(K)¤	ταα	τ _{aŭ}	T _a T _o	τβ¤	τ _b ¤	¯ _ь T₀¤	$\frac{\overline{T}_{a} + \overline{T}_{b}}{T_{0}}^{a}$	R₀¤
190 ¤	3.64 ¤	16¤	0.57¤	1.65¤	α	α	0.57¤	¤
184 ¤	21.6¤	38¤	0.55¤	2.6¤	α	α	0.55¤	a 2.0a
181 ¤	32.5¤	120¤	0.35¤	3.3¤	12¤	0.22¤	0.57¤	2.1¤
178 ¤	58¤	220¤	0.31¤	3.4¤	22¤	0.15¤	0.46¤	2.4¤
172 ¤	360 ¤	1260¤	0.15¤	11.4¤	400 ¤	017¤	0.32¤	2.6¤
н				n	n	n		a

