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Mode-Coupling Theory (MCT)

@ MCT: formulated in the 80’s by Gétze and coworkers.

@ Gives equation of motion for time-dependent density
autocorrelation function: f(t) = (dpx(t)dp_x(0))/Sk where
dpk (1) is the density fluctuation.
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@ my(t) — memory kernel

= k156T/:)30/dq (acg + (k—q)ck— q)} q(t)Sk—q(1)

@ Solve it numerically with Sy = Si(t = 0) as the input.
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Pros and cons of MCT

Early 5 regime: f(t) ~ t~2

Late 5 regime: f(t) ~ t~°.

a b

Experiment | 0.328 | 0.646
MCT 0.312 | 0.583

a-regime: n ~ |T — Tyer|™?

Success:

Simulation
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Failures of MCT:
# Over-estimation of transition point

# Ergodic to non-ergodic transition
# Power law predictions break down 02|
eventually at low T. B S
t
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The Franz-Parisi potential
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@ V[f]: Landau free energy or the Franz-Parisi potential.
@ Impossible (till now) to obtain V[f] for the full k-dependent
MCT, but easy for schematic MCT. However, always

possible to write down V'[f].
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Definitions: A, and Ag critical points:
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@ Connection with MCT: V'[f] = <L — FI[f]

@ Ax: V/[fl]=0and V"[fl]=0and V"[f] £0

@ As: V'[f] =0, V'[f] = 0 and V"[f] = 0 and V"[f] # 0.
Need at least two control parameters to reach the Az point

Length scale round the Az-critical point

Saroj Nandi




Analysis for the glassy side (only schematic)

Expand V’[f] around the transition point with f = f; 4 of:

av' PV 103V
V[f,]+ 570+ 57 (6F)%/2 + 31973 (6f)3

+8V/ 5 +62V/
v "¢ Dfoe

. (6f6€)/2+... =0, (1)

Leading order:
108V 5 oV
a1 ar 00"~ e
Special direction in phase space: If (0V’/Je) - de =0

0e = 6f ~ (8¢)1/3 (2)

18V o &RV 1
TV sm3 : ~ (56)1/2
31 75 ON° ~ S - (6F0€) /2 = 6 ~ (5¢) (3)
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Special direction and choice of parameters

,,,,, : ncoordmate (€=0)
‘2A3 point

. &-coordinate

c

Condition 2 de - 0e = 0 is satisfied along the Ay transition line.
Natural choice for generic control parameters: Ay and As.
However, for technical reason (convenience of the calculation)
we chose n and €.

These are equally good choices — why?
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Behaviour of length scale (schematic again)

@ Perturb the system with external field at wave-vector qp.
Obtain behaviour for a three-point correlator.

@ Within schematic formulation: length scale behaves
according to the variation of 6 V"[f] = V"[f] — V"[f].

o
., ) av" . 192V"
V() = V'(Fe) + 576 + 5 55 (61 +
132v"

Lowest order: § V" (f) ~ (6F)2.

2 0f2
Due to rotational invariance, for non-zero qo,

OV () = b5k (007 + G,

—1/3
1 13 , ingeneral,
e {n—”% fe—o0. “
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Analysis for the liquid side: Results

@ Relaxation times along the two directions:
In ,7_/&5) ~ 5—1/6; In Tg]) ~ 7,/—1/4 (5)

@ Scaling form for the three-point correlator:

S, w,
@t~ Mg <|s|‘/6|nt,qo/|s|1/3),

al¢?® 4+ Tqh
in general , (6)
SqV,
(@)= 20 ("It o/l 2)
% aln| + g5
when £ =0, (7)

@ There exists only -regime, no a-regime around the As
point.

The critical dimension for this theory is 6.
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Comparison with numerical solution: the model

@ We tested on Fy3 [= v4f(t) + vaf(t)3] model.
@ Transform v; and v3 in terms of £ and .
@ Numerically solve the model for both f(t) and x ¢, (1).
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Comparison with numerical solution
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Figure : The scaling tests for two-point correlation function: (a) The
logarithm of the relaxation time varies as ¢~/ when = 0 and

(f — f;) ~ &'3py(Int/In 7). The data collapse ensures that the scaling
relations are valid. (b) Same as in (a) now along the 7-line where
¢=0.Herelnt ~n~"*and (f — f;) ~ n'/2py(Int/In7).
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Numerical test: three-point function
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Figure : At go = 0, if we plot xq,—o(t)¢?/® as a function of ¢/ Int, the
curves for different £ should follow a master curve close to the critical
point where ¢ is very small. The figure in right is the same as in left
with the y-axis being in logarithmic scale.
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Numerical test: three-point function
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Figure : The scaling function of x40 along the n-coordinate. The
figure in the right is the same as in the left with the y-axis being in
logarithmic scale.
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Numerical test: non-zero q
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Figure : Length ¢ ~ ¢=1/3
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Figure : Length ¢ ~ n~1/2
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Discussion

@ At A3 point: dynamic and thermodynamic transitions take
place at the same time. If MCT is the correct mean-field
theory, it must work better here.

[Seems to be the case: R. Jack and C. J. Fullerton, PRE
(2013)]

@ Power law near A, point vs activated relaxation laws
around Az point:
MCT near A; line: 7 ~ £7.
For activated dynamics: In7 ~ £#
Interesting point: MCT near As point predicts activated
relaxation laws.
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Analogy with the phase diagram of RFIM

Az Asor T;

h §

Figure : Analogy of the phase diagram of a glassy system around the
A3 critical point with that of an Ising model in an external field. n or A,
directions are parallel to the A transition line and A; is the
perpendicular direction. We considered a different direction &
although the critical exponents along the A, and ¢ directions will be
same.
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