Behaviour of the length scale around the higher-order mode-coupling theory critical point

> Saroj Kumar Nandi IPhT, CEA, Saclay

work done with G. Biroli, J.-P. Bouchaud, K. Miyazaki and D. Reichman

Bangalore, 2014

Mode-Coupling Theory (MCT)

- MCT: formulated in the 80's by Götze and coworkers.
- Gives equation of motion for time-dependent density autocorrelation function: $f_k(t) = \langle \delta \rho_k(t) \delta \rho_{-k}(0) \rangle / S_k$ where $\delta \rho_k(t)$ is the density fluctuation.

$$\frac{\partial^2 f_{\mathbf{k}}(t)}{\partial t^2} + D_L k^2 \frac{\partial f_{\mathbf{k}}(t)}{\partial t} + \frac{k_B T k^2}{S_k} f_{\mathbf{k}}(t) + \int_0^t m_{\mathbf{k}}(t-t') \dot{f}_{\mathbf{k}}(t') dt' = 0,$$

• $m_k(t) \rightarrow$ memory kernel

$$m_k(t) = \frac{k_B T \rho_0}{16\pi^3} \int d\mathbf{q} \left[\hat{k} \cdot (\mathbf{q} c_q + (\mathbf{k} - \mathbf{q}) c_{k-q}) \right]^2 S_q(t) S_{k-q}(t)$$

• Solve it numerically with $S_k = S_k(t = 0)$ as the input.

Pros and cons of MCT

Success:

Failures of MCT:

Over-estimation of transition point# Ergodic to non-ergodic transition# Power law predictions break downeventually at low *T*.

Early β regime: $f(t) \sim t^{-a}$ Late β regime: $f(t) \sim t^{-b}$.

The Franz-Parisi potential

- *V*[*f*]: Landau free energy or the Franz-Parisi potential.
- Impossible (till now) to obtain V[f] for the full k-dependent MCT, but easy for schematic MCT. However, always possible to write down V'[f].

Definitions: A_2 and A_3 critical points:

- Connection with MCT: $V'[f] = \frac{f}{1-f} \mathcal{F}[f]$
- A_2 : V'[f] = 0 and V''[f] = 0 and $V'''[f] \neq 0$
- A₃: V'[f] = 0, V''[f] = 0 and V'''[f] = 0 and V^{iv}[f] ≠ 0.
 Need at least two control parameters to reach the A₃ point.

・ 同 ト ・ ヨ ト ・ ヨ ト

Analysis for the glassy side (only schematic)

Expand V'[f] around the transition point with $f = f_c + \delta f$:

$$V'[f_c] + \frac{\partial V'}{\partial f} \delta f + \frac{\partial^2 V'}{\partial f^2} (\delta f)^2 / 2 + \frac{1}{3!} \frac{\partial^3 V'}{\partial f^3} (\delta f)^3 + \frac{\partial V'}{\partial \epsilon} \cdot \delta \epsilon + \frac{\partial^2 V'}{\partial f \partial \epsilon} \cdot (\delta f \delta \epsilon) / 2 + \ldots = 0, \qquad (1)$$

Leading order:

$$\frac{1}{3!} \frac{\partial^3 V'}{\partial f^3} (\delta f)^3 \sim \frac{\partial V'}{\partial \epsilon} \cdot \delta \epsilon \quad \Rightarrow \delta f \sim (\delta \epsilon)^{1/3}$$
(2)

Special direction in phase space: If $(\partial V' / \partial \epsilon) \cdot \delta \epsilon = 0$:

$$\frac{1}{3!}\frac{\partial^3 V'}{\partial f^3} (\delta f)^3 \sim \frac{\partial^2 V'}{\partial f \partial \epsilon} \cdot (\delta f \delta \epsilon)/2 \quad \Rightarrow \delta f \sim (\delta \epsilon)^{1/2}$$
(3)

Götze and Sjögren, J. Phys.: Condens. Matter 1, 4203 (1989)

Special direction and choice of parameters

Condition $\frac{\partial V'}{\partial \epsilon} \cdot \delta \epsilon = 0$ is satisfied along the A_2 transition line. Natural choice for generic control parameters: Δ_1 and Δ_2 . However, for technical reason (convenience of the calculation) we chose η and ξ . These are equally good choices – why?

Behaviour of length scale (schematic again)

٥

- Perturb the system with external field at wave-vector *q*₀. Obtain behaviour for a three-point correlator.
- Within schematic formulation: length scale behaves according to the variation of $\delta V''[f] = V''[f] V''[f_c]$.

$$V''(f) = V''(f_c) + \frac{\partial V''}{\partial f} \delta f + \frac{1}{2} \frac{\partial^2 V''}{\partial f^2} (\delta f)^2 + \dots$$

Lowest order: $\delta V''(f) \simeq \frac{1}{2} \frac{\partial^2 V''}{\partial f^2} (\delta f)^2$.

Due to rotational invariance, for non-zero q_0 , $\delta V_{q_0}^{\prime\prime}(f) \simeq \frac{1}{2} \frac{\partial^2 V^{\prime\prime}}{\partial f^2} (\delta f)^2 + q_0^2$.

$$\ell \sim q_0^{-1} \sim egin{cases} \xi^{-1/3}, & ext{in general}, \ \eta^{-1/2}, & ext{if } \xi = 0. \end{cases}$$
 (4)

Biroli, Bouchaud, Miyazaki and Reichman, PRL 97, 195701 (2006)

Analysis for the liquid side: Results

• Relaxation times along the two directions:

$$\ln \tau_{\beta}^{(\xi)} \sim \xi^{-1/6}; \qquad \ln \tau_{\beta}^{(\eta)} \sim \eta^{-1/4}$$
 (5)

• Scaling form for the three-point correlator:

$$\chi_{q_0}(\mathbf{q}, t) \simeq \frac{S_q w_q}{\alpha |\xi|^{2/3} + \Gamma q_0^2} \mathcal{G}\left(|\xi|^{1/6} \ln t, q_0/|\xi|^{1/3}\right),$$

in general, (6)
$$\chi_{q_0}(\mathbf{q}, t) \simeq \frac{S_q v_q}{\alpha |\eta| + \Gamma q_0^2} \mathcal{G}\left(|\eta|^{1/4} \ln t, q_0/|\eta|^{1/2}\right),$$

when $\xi = 0$, (7)

There exists only β-regime, no α-regime around the A₃ point.

The critical dimension for this theory is 6.

Comparison with numerical solution: the model

- We tested on $F_{13} = v_1 f(t) + v_3 f(t)^3$ model.
- Transform v_1 and v_3 in terms of ξ and η .
- Numerically solve the model for both f(t) and $\chi_{q_0}(t)$.

Comparison with numerical solution

Figure : The scaling tests for two-point correlation function: (a) The logarithm of the relaxation time varies as $\xi^{-1/6}$ when $\eta = 0$ and $(f - f_c) \sim \xi^{1/3} p_l (\ln t / \ln \tau)$. The data collapse ensures that the scaling relations are valid. (b) Same as in (a) now along the η -line where $\xi = 0$. Here $\ln \tau \sim \eta^{-1/4}$ and $(f - f_c) \sim \eta^{1/2} p_{ll} (\ln t / \ln \tau)$.

Numerical test: three-point function

Figure : At $q_0 = 0$, if we plot $\chi_{q_0=0}(t)\xi^{2/3}$ as a function of $\xi^{1/6} \ln t$, the curves for different ξ should follow a master curve close to the critical point where ξ is very small. The figure in right is the same as in left with the *y*-axis being in logarithmic scale.

Numerical test: three-point function

Figure : The scaling function of $\chi_{q_0=0}$ along the η -coordinate. The figure in the right is the same as in the left with the *y*-axis being in logarithmic scale.

Numerical test: non-zero q_0

500

э

A B > < B >

 At A₃ point: dynamic and thermodynamic transitions take place at the same time. If MCT is the correct mean-field theory, it must work better here. [Seems to be the case: R. Jack and C. J. Fullerton, PRE (2013)]

Power law near A₂ point vs activated relaxation laws around A₃ point:
 MCT near A₂ line: τ ~ ξ[#].
 For activated dynamics: ln τ ~ ξ[#]
 Interesting point: MCT near A₃ point predicts activated relaxation laws.

(日)

Analogy with the phase diagram of RFIM

Figure : Analogy of the phase diagram of a glassy system around the A_3 critical point with that of an Ising model in an external field. η or Δ_1 directions are parallel to the A_2 transition line and Δ_2 is the perpendicular direction. We considered a different direction ξ although the critical exponents along the Δ_2 and ξ directions will be same.