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Mode-Coupling Theory (MCT)

MCT: formulated in the 80’s by Götze and coworkers.

Gives equation of motion for time-dependent density

autocorrelation function: fk (t) = 〈δρk (t)δρ−k (0)〉/Sk where

δρk (t) is the density fluctuation.

∂2fk(t)

∂t2
+DLk2 ∂fk(t)

∂t
+

kBTk2

Sk
fk(t)+

∫ t

0

mk(t−t ′)ḟk(t
′)dt ′ = 0,

mk (t) → memory kernel

mk (t) =
kBTρ0

16π3

∫

dq
[

k̂ · (qcq + (k − q)ck−q)
]2

Sq(t)Sk−q(t)

Solve it numerically with Sk = Sk (t = 0) as the input.
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Pros and cons of MCT

Success: Early β regime: f (t) ∼ t−a

Late β regime: f (t) ∼ t−b.

a b

Experiment 0.328 0.646

MCT 0.312 0.583

α-regime: η ∼ |T − TMCT |
−γ

and τα ∼ |T − TMCT |
−γ

with γ = 1
2a + 1

2b .
Failures of MCT:

# Over-estimation of transition point

# Ergodic to non-ergodic transition

# Power law predictions break down

eventually at low T .
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The Franz-Parisi potential

f

V
[f
]

at A2 critical point

at A3 critical point

T < Tc

T > Tc

V [f ]: Landau free energy or the Franz-Parisi potential.

Impossible (till now) to obtain V [f ] for the full k-dependent

MCT, but easy for schematic MCT. However, always

possible to write down V ′[f ].
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Definitions: A2 and A3 critical points:

f

V
[f
]

at A2 critical point

at A3 critical point

T < Tc

T > Tc

Connection with MCT: V ′[f ] = f
1−f −F [f ]

A2: V ′[f ] = 0 and V ′′[f ] = 0 and V ′′′[f ] 6= 0

A3: V ′[f ] = 0, V ′′[f ] = 0 and V ′′′[f ] = 0 and V iv [f ] 6= 0.

Need at least two control parameters to reach the A3 point.
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Analysis for the glassy side (only schematic)

Expand V ′[f ] around the transition point with f = fc + δf :

V ′[fc]+
∂V ′

∂f
δf +

∂2V ′

∂f 2
(δf )2/2 +

1

3!

∂3V ′

∂f 3
(δf )3

+
∂V ′

∂ǫǫǫ
· δǫǫǫ+

∂2V ′

∂f∂ǫǫǫ
· (δf δǫǫǫ)/2 + . . . = 0, (1)

Leading order:

1

3!

∂3V ′

∂f 3
(δf )3 ∼

∂V ′

∂ǫǫǫ
· δǫǫǫ ⇒ δf ∼ (δǫ)1/3 (2)

Special direction in phase space: If (∂V ′/∂ǫǫǫ) · δǫǫǫ = 0:

1

3!

∂3V ′

∂f 3
(δf )3 ∼

∂2V ′

∂f∂ǫǫǫ
· (δf δǫǫǫ)/2 ⇒ δf ∼ (δǫ)1/2 (3)

Götze and Sjögren, J. Phys.: Condens. Matter 1, 4203 (1989)
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Special direction and choice of parameters

∆1

∆2

T

c

A2 line

A3 point

ξ-coordinate

η-coordinate (ξ = 0)

Condition ∂V ′

∂ǫǫǫ · δǫǫǫ = 0 is satisfied along the A2 transition line.

Natural choice for generic control parameters: ∆1 and ∆2.

However, for technical reason (convenience of the calculation)

we chose η and ξ.

These are equally good choices – why?
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Behaviour of length scale (schematic again)

Perturb the system with external field at wave-vector q0.

Obtain behaviour for a three-point correlator.

Within schematic formulation: length scale behaves

according to the variation of δV ′′[f ] = V ′′[f ]− V ′′[fc ].

V ′′(f ) = V ′′(fc) +
∂V ′′

∂f
δf +

1

2

∂2V ′′

∂f 2
(δf )2 + . . . .

Lowest order: δV ′′(f ) ≃
1

2

∂2V ′′

∂f 2
(δf )2.

Due to rotational invariance, for non-zero q0,

δV ′′

q0
(f ) ≃ 1

2
∂2V ′′

∂f 2 (δf )2 + q2
0 .

ℓ ∼ q−1
0 ∼

{

ξ−1/3, in general ,

η−1/2, if ξ = 0.
(4)

Biroli, Bouchaud, Miyazaki and Reichman, PRL 97, 195701 (2006)
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Analysis for the liquid side: Results

Relaxation times along the two directions:

ln τ
(ξ)
β ∼ ξ−1/6; ln τ

(η)
β ∼ η−1/4 (5)

Scaling form for the three-point correlator:

χq0
(q, t) ≃

Sqwq

α|ξ|2/3 + Γq2
0

G

(

|ξ|1/6ln t ,q0/|ξ|
1/3

)

,

in general , (6)

χq0
(q, t) ≃

Sqvq

α|η|+ Γq2
0

G

(

|η|1/4 ln t ,q0/|η|
1/2

)

,

when ξ = 0, (7)

There exists only β-regime, no α-regime around the A3

point.

The critical dimension for this theory is 6.
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Comparison with numerical solution: the model

We tested on F13 [= v1f (t) + v3f (t)3] model.

Transform v1 and v3 in terms of ξ and η.

Numerically solve the model for both f (t) and χq0
(t).
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Comparison with numerical solution
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Figure : The scaling tests for two-point correlation function: (a) The

logarithm of the relaxation time varies as ξ−1/6 when η = 0 and
(f − fc) ∼ ξ1/3pI(ln t/ ln τ). The data collapse ensures that the scaling

relations are valid. (b) Same as in (a) now along the η-line where
ξ = 0. Here ln τ ∼ η−1/4 and (f − fc) ∼ η1/2pII(ln t/ ln τ).
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Numerical test: three-point function
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Figure : At q0 = 0, if we plot χq0=0(t)ξ
2/3 as a function of ξ1/6 ln t, the

curves for different ξ should follow a master curve close to the critical

point where ξ is very small. The figure in right is the same as in left
with the y -axis being in logarithmic scale.
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Numerical test: three-point function
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Figure : The scaling function of χq0=0 along the η-coordinate. The
figure in the right is the same as in the left with the y -axis being in

logarithmic scale.
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Numerical test: non-zero q0

-5 -4 -3 -2 -1 0 1 2
-5

-4

-3

-2

-1

0

1

log
10

[q
0
 ξ- 1/ 3]

lo
g 10

[χ
q 0 ξ

2/
3 ]

 

 

-50 -10 30 70 90
0

2

4

6

log
10

 t

lo
g 10

 χ
q 0(t

)

 

 
0.20
0.10
0.04
0.01
0.0

fit
data

Figure : Length ℓ ∼ ξ−1/3
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Figure : Length ℓ ∼ η−1/2
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Discussion

At A3 point: dynamic and thermodynamic transitions take

place at the same time. If MCT is the correct mean-field

theory, it must work better here.

[Seems to be the case: R. Jack and C. J. Fullerton, PRE

(2013)]

Power law near A2 point vs activated relaxation laws

around A3 point:

MCT near A2 line: τ ∼ ξ#.

For activated dynamics: ln τ ∼ ξ#

Interesting point: MCT near A3 point predicts activated

relaxation laws.
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Analogy with the phase diagram of RFIM

(T − Tc)

h ξ

A2-line

∆2 A3 or Tc

η,∆1

Figure : Analogy of the phase diagram of a glassy system around the

A3 critical point with that of an Ising model in an external field. η or ∆1

directions are parallel to the A2 transition line and ∆2 is the
perpendicular direction. We considered a different direction ξ
although the critical exponents along the ∆2 and ξ directions will be

same.
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