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• Generic property: In most glass-forming liquids and 
polymers the T-dependence is stronger than an 
Arrhenius one.

• Specific measure: The degree of super-Arrhenius 
behavior is a material property.
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The concept of fragility....

(Kinetic) fragility -> how quickly transport 
coefficients and relaxation times increase as 
one cools a glass-forming system



• A unifying classification scheme of all glass-forming 
systems.

• Taken as an intrinsic property of the dynamical 
slowdown, it has led to a variety of empirical 
correlations with other material-specific properties 
(associated with thermodynamics, slow or fast 
dynamics) => a key for understanding the glass 
transition?
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Usefulness of the concept of  fragility



•How to best quantify fragility?

•How significant are the observed 
differences in fragility?

•Is fragility connected to ‶cooperativity″?
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Assessing its operational and 
fundamental relevance:
A selection of questions



How to best quantify fragility?  



Choice of a rescaling temperature
The conventional choice: Tg
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FIG. 1: Regimes of the aperiodic condensed molecular phase
are shown, ranging between a dilute gas and a frozen glass.
Tv is the vaporization temperature, Tm the melting point.
TA represents the temperature signalling the crossover to ac-
tivated motions, which is usually but not always below Tm. Tg

is the glass transition temperature which depends on the time
scale of measurement. Below Tg the system is out of equilib-
rium and ages. TK is the Kauzmann temperature (see text).
TD is the Debye temperature which signals the quantization
of vibrational motions. Below TD/30, or so, the thermal prop-
erties of the system can be phenomenologically described as
arising from a collection of two level systems. Just above this
point, additional quantum excitations, sometimes called the
Boson peak, are present.

in energy. We call this change a “random first order tran-
sition.”

We will begin this review by discussing a small number
of key experimental signatures of the glass transition in
Section II. In Section III, we construct the microscopic
picture of the glassy state and the transition to it from a
supercooled liquid, following the random first order tran-
sition theory. A variety of temperatures characterizes
glasses and liquids in this theory. They are graphically
summarized in Fig.1. We will define these scales more
precisely in the discussion below and we recommend the
reader to often refer to this figure. Starting with a one-
component gas, one may cool it down and compress it
until it condenses below the critical point, Tv, usually
above the crystallization temperature Tm. In this tem-
perature range, an effective description in terms of col-
lisional transport is valid: a liquid is just a very dense
gas held together by an average attractive force. No two
molecules are likely to reside near each other for any sig-
nificant time. The time scales for molecular permuta-
tions and collisions are comparable in this regime. All
the pertinent information about particle-particle interac-
tions may be encoded in low order correlation functions
that may be computed or extracted experimentally from
scattering experiments. In a supercooled liquid, on the
other hand, molecules maintain their immediate set of
neighbors for hundreds of collisional or vibrational peri-
ods. This occurs near the temperature TA. These local
spatial patterns persist ever longer as the temperature is
lowered. Interconversion between such structures occurs
both above and below the glass transition temperature
Tg, which depends on the preparation time scale. The in-

FIG. 2: The viscosities of several supercooled liquids are plot-
ted as functions of the inverse temperature. Substances with
almost-Arrhenius-like dependences are said to be strong liq-
uids, while the visibly convex curves are described as “fragile”
substances. The full dynamic range from about a picosecond,
on the lower viscosity side, to 104 seconds or so when the vis-
cosity reaches to 1013 poise. This figure is taken from Ref.[6].

terconversion is called the α-relaxation when the material
remains in equilibrium. However, when α-relaxation be-
comes too slow and only a fraction of the interconversions
have time to occur, the material is a glass that “ages”.
Even at cryogenic temperatures (liquid He and below), a
certain fraction of the sample will harbor several kinet-
ically accessible states. Interconversions can still occur
by tunneling. These quantum motions are discussed in
Section IV. In the final Section V, we make concluding
remarks and highlight some open questions in the field.

II. BASIC PHENOMENOLOGY OF THE
STRUCTURAL GLASS TRANSITION

Liquids exhibit a remarkable range of dynamical be-
haviors within a relatively narrow temperature interval.
Viscosity, for example, varies over a tremendous dynamic
range: Fig.2 reproduces the celebrated “Angell” plot of
the viscosities for superooled liquids as functions of the
inverse temperature scaled to their respective glass tran-
sition temperatures, where the relaxation time is roughly
one hour [6]. The temperature dependence of other struc-
tural relaxation times, such as the inverse of the lowest
frequency peak of the dielectric susceptibility, follow a
similar temperature dependence and can be described by
the so-called Vogel-Fulcher (VF) law, to a first approxi-
mation:

τ = τ0e
DT0/(T−T0), (1)

where the material coefficient D is called the liquid’s
“fragility”. The Vogel-Fulcher fits work better in the

Standard measure = Steepness index at Tg: m =
∂ log10(τ(T )/τ∞

∂(Tg/T )

���
Tg



• Does not allow a comparison with liquid models 
studied by computer simulation,

• May include irrelevant effects, e.g. the contribution 
from the high-T dynamics,

• Depends on a time scale.
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Shortcomings...



The high-T slowdown is intertwined  
with fragility: ‶strength″ vs fragility

Arrhenius plot of the reorientational time of 
molecular liquids [Roessler et al., 2013]

084504-7 Schmidtke et al. J. Chem. Phys. 139, 084504 (2013)

(a)

(b)

FIG. 8. (a) Ecoop(T)/E∞ versus T/E∞ obtained by fitting τ (T) data interpo-
lated by an exponential function (solid lines) for the three systems 2-methyl
tetrahydrofuran (MTHF), o-terphenyl (OTP), and propylene glycol. (b) Same
data on logarithmic scale; straight lines illustrate an exponential temperature
dependence.

secondary relaxation (β-process), and the separation of the
spectral contributions of α- and β-process and consequently a
reliable estimate of τ (T) may not be straightforward. Except
for the two hydrogen bond network forming liquids glycerol
and propylene glycol µ or m does not vary significantly, and
it is not clear so far whether there are examples of molecu-
lar glass formers which exhibit fragility between the limit of
glycerol/propylene glycol and the group of van der Waals liq-
uids like OTP.

In Fig. 12 (in Appendix D) a possible correlation between
the parameters E∞ and µ is tested. Clearly, no correlation is
found, meaning that the parameters are independent of each

FIG. 9. Correlation between the generalized fragility parameter µ and the
conventionally defined fragility index m; color code as in Fig. 7.

FIG. 10. Reorientational correlation times of the molecular liquids (for ab-
breviations see Table I) obtained by depolarized light scattering includ-
ing DM/TFPI and PCS (full symbols; present work and Refs. 16–18 and
25–27) and from our dielectric database (open symbols).11, 43–46 For the fol-
lowing systems additional data are used: OTP;14, 37–39 MTHF;34, 35 n-butyl
benzene;47, 48 iso-propylene benzene;49–51 trinaphthyl benzene (TNB).52 Vis-
cosity data (rescaled): for OTP,36 TNB,53 and propylene glycol54 (crosses);
for toluene 2H NMR data41 have been included; solid lines: fit by the current
approach (Eq. (3)).

other and we need at least another parameter in addition to
τ∞ and E∞ for describing the increase of the time constants
close to Tg. We note that based on the validity of the VFT
equation a correlation E∞ ∝ Tg/m was proposed for a series
of molecular as well as network glass formers,42 which is not
found in our data. Actually, it is difficult to test because of
the relatively small variation of m in our dataset for molecular
liquids. Accessing the high-temperature activation energy E∞
in network forming glasses such as GeO2 (Tg = 800 K) ap-
pears almost impossible. The authors restricted their analysis
to reduced temperatures T/Tg < 2.5 while, e.g., for MTHF our
present analysis covers a range T/Tg < 4.5.

Finally, we display in Fig. 10 all the data compiled by our
light scattering equipment and complemented in some cases
by the results of other techniques like dielectric spectroscopy
(partly from our group), viscosity, and diffusion. They are al-
most perfectly interpolated by applying Eq. (3). For the first
time, a complete fit of τ (T) from the boiling point down to Tg

has become possible.

IV. CONCLUSION

Combining different light scattering techniques (DM,
TFPI, and PCS), the evolution of the susceptibility spectra
has been measured for a series of molecular glass formers and
for temperatures between the boiling point (T ≤ 440 K) and
Tg. The corresponding Tg values range from 92 K to 333 K.
The time constants presented agree well with those obtained
from other techniques when available. In the case of the
low-Tg liquids a broad high-temperature interval has been
identified for which τ (T) is well described by an Arrhenius
temperature dependence. Here, structural and microscopic
dynamics have essentially merged, i.e., a two-step correlation
function is not observed any longer, and time constants down
to 10−12 s (in some cases even below) have been extracted in
a model independent way. A trend to crossover to Arrhenius
high-temperature dependence well above the melting point
is also found for systems with higher Tg and also for the
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• At high T:
• At low T:

=> The steepness index at Tg depends on E∞  [Ferrer et al., 1999]

τ(T )/τ∞ � e
E∞
T

τ(T )/τ∞ � e
E(T )

T , with E(T ) = E∞ +∆E(T )



A way out... but which requires 
additional manipulations

[GT,Kivelson,Viot, 2000]
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• Scale to a high (crossover, onset) temperature T*
• Define a cooperative contribution E(T)-E∞



Fragility and thermodynamic path:
isochoric vs isobaric fragility

At constant P, the slowdown of relaxation also 
depends on the increase of density. 
=> A better intrinsic measure of the T dependence 
is then the isochoric fragility... but it is a priori 
harder to access experimentally.



Empirical (approximate) rescaling of density 
effect in glass-forming liquids and polymers

(a) Binary Lennard-Jones model; (b) Molecular liquid (o-TP); (c) Polymer (PVME)
[Alba-Simionesco et al., 2002-2005]

• Many more examples: see M. Roland et al. 2004-2005, and others...
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Consequence of the density scaling:
The isochoric fragility is independent 

of density!

Modified Angell plot: log(τ) vs X/Xg, with X=e(ρ)/T [CAS,GT,2004]

and a linear behavior, E1(q) / q ! q* (where in both cases
a q-independent amplitude factor is left undetermined and
is implicitly included in the definition of the scaling func-
tions W and U). Better descriptions could be achieved by
adding more parameters; for instance, a quadratic term
could be added to the linear form in order to describe, if
necessary, a curvature in the shape of E1(q).

Data collapse on master curves, as predicted by Eq. (1),
is illustrated in Fig. 1(a,b,c) for different systems [12,3,15]:
the binary Lennard–Jones model studied by simulation, for
which E1(q) had been previously determined [14], the
organic glassformer o-terphenyl and a polymer, polyvinyl-
methylether (PVME). We have also obtained a good data
collapse for other liquid models, molecular liquids and
polymers. Analysis of the work done by other groups
[16,17] confirms the validity of the scaling described by
Eqs. (1) and (2).

3. Consequences of the scaling

One of course hopes that more work will be under-
taken to increase the (q,T) data base on a variety of
glassformers (with a variety of experimental probes) and
to provide additional checks of the data collapse on mas-
ter curves, but taking now the scaling hypothesis for
reasonably well established one may explore its conse-
quences. At a theoretical level, the most important out-
come is that density can be properly scaled out and the
viscous slowing down then described as a thermally acti-
vated process. In particular, the isochoric fragility, i.e, the
measure of the degree of super-Arrhenius behavior at
constant density, is independent of the density and can
thus be taken as an intrinsic property of a given glass-
former (which has led us to suggest a modification of
the celebrated Angell plot [15] as illustrated in Fig. 2; a
similar modification has been independently proposed in
Ref. [16]). This can be seen by considering for instance
the isochoric steepness index mq(q,s) at a given value s
of the relaxation time,

mqðq; sÞ ¼
o logðsaðq; T ÞÞ

oðT s=T Þ

!!!!
q

ðT ¼ T sÞ; ð4Þ

where Ts(q) is the temperature at which sa(q,Ts) = s (usu-
ally, s % 102 s and Ts is simply Tg). As a consequence of
Eqs. (1),(4) can be rewritten as

mqðq; sÞ ¼ X sW0ðX sÞ; ð5Þ

where W 0(X) is the first derivative of the scaling function W;
Xs is equal to E1(q)/Ts(q) and satisfies, by definition,
W(Xs) = logs, i.e., is independent of q. As a result mq(q,s)
is independent of density, which completes the proof.

The mere existence of the scaling formula, Eq. (1) (or
Eq. (2)), also generates a number of inter-relations between
quantities that would otherwise be independent. For
instance, the ratio of the isobaric and isochronic coeffi-
cients of expansivity, aP/jasj, that has been introduced to

characterize the relative importance of q over that of T in
the slowing down at a given pressure (and is simply related
to another ratio, HP/Ev = [oln(sa)/o(1/T)]P/[oln(sa)/o(1/
T)]V), introduced earlier by Williams et al. and by Naoki
et al. [1], can be expressed as

aP=jasj ¼ aPT s
d lnðE1ðqÞÞ

d lnðqÞ

!!!!; ð6Þ

where Ts(q) is defined as above and dln(E1(q))/dln(q) re-
duces to a constant x in the case of a power-law description
of the activation energy, E1(q) / qx. Fragility at constant
pressure can be characterized by the isobaric steepness
index

mPðP ; sÞ ¼
o lnðsaðP ; T ÞÞ

oðT s=T Þ

!!!!
P

ðT ¼ T sÞ; ð7Þ

where Ts(P) is the temperature at which sa(P,Ts) = s. By
using Eq. (7), it is easy to show that the isochoric and iso-
baric steepness indices are related through

mPðP ; sÞ=mqðsÞ ¼ 1þ aP=jasj

¼ 1þ aPðP ; sÞT sðP Þ
d lnðE1ðqÞÞ

d lnðqÞ : ð8Þ

The above equation shows immediately that even if the
isochoric fragility is independent of density, the isobaric
one depends on pressure [18] and that the isobaric fragility
is always larger than the isochoric one, which is indeed

Fig. 2. Modified Angell plot: log(sa(q,T)) versus X/Xg, where X = E1(q)/
T is the scaling variable introduced in the text and Xg its value when sa
reaches a characteristic ‘glass transition’ value, say sag = 100 s for
dielectric relaxation data or gg = 1013 mPas, for several systems; the
celebrated Angell plot introduced in this conference 20 yr ago is shown in
inset, where sa or g at atmospheric pressure is plotted versus the inverse
scaled temperature Tg/T.

4890 C. Alba-Simionesco, G. Tarjus / Journal of Non-Crystalline Solids 352 (2006) 4888–4894



How significant are the observed 
differences in fragility?  



In glass-forming liquids and polymers

The (isobaric) fragility index varies from 20 (silica) 
to 80-100 (fragile molecular liquids) and 150 or 
more (polymers).

However, one should account for possibly irrelevant 
or spurious effects,
• the role of the bare activation energy E∞

• the role of density
• in polymers, the specific effects associated with 

the chain structure and the entropy of mixing 
[Dalle-Ferrier et al, 2009, Novikov-Sokolov & coll.],

which may reduce the span of intrinsic fragilities.

Quite a different behavior in soft-condensed 
(jamming) systems...



Fragility in models for foams and emulsions

15

•Simple models of spherical particles interacting via 
truncated repulsive potentials:

•At low T, the isochoric fragility can vary by one order of 
magnitude or more. [Berthier,Witten, 2009]Compressing nearly hard sphere fluids increases glass fragility
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Fig. 2: (a) Relaxation timescales for all investigated state
points. We rescale τα by 1/

√
T so that the T → 0 limit coin-

cides with hard spheres thermalized at T = 1. Not all volume
fractions are labelled. (b) Collapse of the ϕ < ϕ0 and ϕ > ϕ0

data along the bottom and top branches, respectively using
eq. (4) and imposing µ = 1.3 from considering the potential
energy. (c) Arrhenius plot of the ϕ > ϕ0 data, using the defi-
nition τα(ϕ, Tg) = 5 · 106.

fraction for the elastic sphere system at volume fraction ϕ
and temperature T . Furthermore, we build upon a recent
analysis of the dynamics of colloidal hard spheres [10] and
assume an exponential divergence for τhs

α :

τhs
α (ϕ) ∼ exp

[

A

(ϕ0 − ϕ)δ

]

, (3)

where δ ≈ 2 and ϕ0 ≈ 0.637 [10]. Although the exponen-

tial divergence of τhs
α is unambiguous from hard sphere

studies [10], the values of δ and ϕ0 remain subject to large
uncertainty because the divergence must be extrapolated
along a single path (increasing ϕ at T = 0), relatively far
away from ϕ0.

We analyze the results of fig. 2-a and approach point G
from multiple paths in the (ϕ, T ) plane to establish the
robustness of eq. (3). Combining (2)-(3) we suggest:

τα(ϕ, T ) ∼ exp

[

A

|ϕ0 − ϕ|δ
F±

(

|ϕ0 − ϕ|2/µ

T

)]

, (4)

where the scaling functions F±(x) apply to densities
above/below ϕ0. We expect therefore that F−(x → ∞) →
1 to recover the hard sphere fluid limit, eq. (3), when
T → 0 and ϕ < ϕ0. Similarly, F+(x → ∞) → ∞.
Moreover, continuity of τα at finite T and ϕ = ϕ0 implies
F−(x → 0) ∼ F+(x → 0) ∼ xδµ/2. Dynamic scaling was
recently observed for athermal jamming transitions [5, 6],
but the nature of the critical density and hard sphere di-
vergence (algebraic instead of exponential) were different
from eq. (4), while no physical interpretation of scaling in
terms of an effective hard sphere behaviour was offered.

The proposed scaling behaviour is confirmed in fig. 2-b
for data in the range ϕ ∈ [0.567, 0.736]. To obtain the
scaling plot, we fix µ = 1.3 (see below), and use ϕ0 and
δ as free parameters to collapse |ϕ0 − ϕ|δ log τα against
|ϕ0−ϕ|2/µ/T . The best collapse is shown, but good results
are obtained for nearby values of ϕ0 and δ, yielding error
bars:

ϕ0 = 0.635 ± 0.005, δ = 2.2 ± 0.2. (5)

Outside this range, the collapse quickly deteriorates. Note
that δ = 1, often used to describe hard sphere data [8],
is inconsistent with our results. Our scaling analysis thus
lends crucial support to the conclusions of [10]. Of course,
we cannot exclude that a different dynamic regime can be
entered when relaxation timescales beyond reach of our
numerical capabilities are added to the analysis.

Glass fragility. – The scaling in eq. (4) predicts
the temperature dependence of τα at ϕ0: τα(ϕ0, T ) ∼
exp

(

A/T µδ/2
)

. Since µδ/2 ≈ 1.43, this divergence is
slightly stronger than, but not very different from, the
simple Arrhenius behaviour observed for ‘strong’ glass-
formers [18]. The divergence of the scaling function F+(x)
for large argument moreover implies that the temperature
dependence of τα for ϕ > ϕ0 becomes steeper, making
the materials increasingly ‘fragile’ [18]. This is vividly
demonstrated in fig. 2-c, where we conventionally rescale
T by Tg defined as the temperature where τα reaches an
arbitrary value [18], log10 τα(ϕ, Tg) = Xg. Such a large
change of fragility was not reported in a particle model
before [21–23]. Here, it directly results from the interplay
between ϕ and T . We quantify fragility by the steepness
index [18]:

m =
∂ log10 τα

∂(Tg/T )

∣

∣

∣

∣

Tg

, (6)

p-3

Compressing nearly hard sphere fluids increases glass fragility
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eq. (4) and imposing µ = 1.3 from considering the potential
energy. (c) Arrhenius plot of the ϕ > ϕ0 data, using the defi-
nition τα(ϕ, Tg) = 5 · 106.

fraction for the elastic sphere system at volume fraction ϕ
and temperature T . Furthermore, we build upon a recent
analysis of the dynamics of colloidal hard spheres [10] and
assume an exponential divergence for τhs

α :

τhs
α (ϕ) ∼ exp

[

A

(ϕ0 − ϕ)δ

]

, (3)

where δ ≈ 2 and ϕ0 ≈ 0.637 [10]. Although the exponen-

tial divergence of τhs
α is unambiguous from hard sphere

studies [10], the values of δ and ϕ0 remain subject to large
uncertainty because the divergence must be extrapolated
along a single path (increasing ϕ at T = 0), relatively far
away from ϕ0.

We analyze the results of fig. 2-a and approach point G
from multiple paths in the (ϕ, T ) plane to establish the
robustness of eq. (3). Combining (2)-(3) we suggest:

τα(ϕ, T ) ∼ exp

[

A

|ϕ0 − ϕ|δ
F±

(

|ϕ0 − ϕ|2/µ

T

)]

, (4)

where the scaling functions F±(x) apply to densities
above/below ϕ0. We expect therefore that F−(x → ∞) →
1 to recover the hard sphere fluid limit, eq. (3), when
T → 0 and ϕ < ϕ0. Similarly, F+(x → ∞) → ∞.
Moreover, continuity of τα at finite T and ϕ = ϕ0 implies
F−(x → 0) ∼ F+(x → 0) ∼ xδµ/2. Dynamic scaling was
recently observed for athermal jamming transitions [5, 6],
but the nature of the critical density and hard sphere di-
vergence (algebraic instead of exponential) were different
from eq. (4), while no physical interpretation of scaling in
terms of an effective hard sphere behaviour was offered.

The proposed scaling behaviour is confirmed in fig. 2-b
for data in the range ϕ ∈ [0.567, 0.736]. To obtain the
scaling plot, we fix µ = 1.3 (see below), and use ϕ0 and
δ as free parameters to collapse |ϕ0 − ϕ|δ log τα against
|ϕ0−ϕ|2/µ/T . The best collapse is shown, but good results
are obtained for nearby values of ϕ0 and δ, yielding error
bars:

ϕ0 = 0.635 ± 0.005, δ = 2.2 ± 0.2. (5)

Outside this range, the collapse quickly deteriorates. Note
that δ = 1, often used to describe hard sphere data [8],
is inconsistent with our results. Our scaling analysis thus
lends crucial support to the conclusions of [10]. Of course,
we cannot exclude that a different dynamic regime can be
entered when relaxation timescales beyond reach of our
numerical capabilities are added to the analysis.

Glass fragility. – The scaling in eq. (4) predicts
the temperature dependence of τα at ϕ0: τα(ϕ0, T ) ∼
exp

(

A/T µδ/2
)

. Since µδ/2 ≈ 1.43, this divergence is
slightly stronger than, but not very different from, the
simple Arrhenius behaviour observed for ‘strong’ glass-
formers [18]. The divergence of the scaling function F+(x)
for large argument moreover implies that the temperature
dependence of τα for ϕ > ϕ0 becomes steeper, making
the materials increasingly ‘fragile’ [18]. This is vividly
demonstrated in fig. 2-c, where we conventionally rescale
T by Tg defined as the temperature where τα reaches an
arbitrary value [18], log10 τα(ϕ, Tg) = Xg. Such a large
change of fragility was not reported in a particle model
before [21–23]. Here, it directly results from the interplay
between ϕ and T . We quantify fragility by the steepness
index [18]:

m =
∂ log10 τα

∂(Tg/T )

∣

∣

∣

∣

Tg

, (6)

p-3

v(r) = �(1− r/σ)α for r < σ



Jamming systems at low T behave differently 
from glass-forming liquids
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V. IS THE ABSENCE OR PRESENCE OF
(APPROXIMATE) SCALING DUE TO

ATTRACTION OR TO TRUNCATION IN THE
POTENTIAL ?

We have seen that the presence (in the LJ model) or the
absence (in the WCA model) of an attractive tail in the
pair potentials has a large quantitative influence on the
dynamics and strong consequences for the fluctuations
and the relaxation properties of the liquids. In partic-
ular the (approximate) density scaling observed for the
temperature dependence of the relaxation time in glass-
forming liquids and polymers (with the resulting density
independence of the isochoric fragility) is found in the
LJ model but not in the WCA one. A central question
then to be raised is whether the differences stem from the
attractive character of the tail per se or from the trunca-
tion of the range of the potential to typical interatomic
distances.
A first hint that truncation is the key feature is pro-

vided by looking at the behavior of systems of spheres
with purely repulsive power-law potentials. As already
mentioned, such liquids are (rigorously) “strongly corre-
lating” and show an exact density scaling of the relax-
ation time, as a consequence of the scale-free power law
behavior of the potential. This example evidences that
the presence of attractive interactions is not a necessary
ingredient in establishing these properties.
Additional evidence along the same lines has recently

been provided by Pedersen et al. [16] who showed that
the pair structure and the dynamics of the binary LJ
mixture at liquid densities can be very well reproduced by
replacing the LJ pair potentials by nontruncated power-
law repulsive potentials with an appropriately adjusted
exponent. Note that they chose a repulsion of the form
r−15.48 such that γ = Γ = 5.16, in rough agreement with
the data shown in previous sections.
To confirm that truncating the potentials beyond a

cutoff of the order of typical interatomic distances is re-
sponsible for the absence of density scaling seen in the
WCA model, we revisit the example of fluid mixtures of
repulsive harmonic spheres, with pair potentials

vαβ(r) =
εαβ
s

(

1−
r

σαβ

)s

, for r ≤ σαβ

= 0, for r ≥ σαβ ,

(14)

where s = 2; these systems are commonly used in the
context of zero-temperature jamming phenomena [29].
A wide range of temperature and density was studied by
computer simulation in Refs. [17, 18]. As noticed in these
references, the isochoric fragility of the system strongly
depends on density. We have replotted in Fig. 11 the
relaxation-time data in the way described in section IV
(and used in Fig. 2 of Ref. [10]) by rescaling the temper-
ature with a density-dependent energy parameter E∞(ρ)
chosen to make the high-T data collapse on a single curve.
This plot clearly shows that, just like the WCA model
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FIG. 11: Rescaling of the relaxation time data for the har-
monic repulsive spheres at low temperatures after having nor-
malized the temperature by the energy parameter E∞(ρ) cho-
sen to make all curves collapse at high-T . The density ρ is
indicated in the figure. This evidences a dramatic breakdown
of density scaling in harmonic spheres, similar to the one ob-
served for the WCA model.

and at odds with the full LJ one, there is no density
scaling of the relaxation for truncated harmonic spheres.
The similarity of behavior between the truncatedWCA

model and the truncated harmonic potential on the one
hand and between the LJ model and the repulsive power-
law model on the other is a strong indication that the
presence or absence of density scaling in the dynamics
of a glass-former results from the presence or absence of
a truncation of all pair interactions at a typical inter-
atomic distance. This observation would perhaps not be
very surprising at much lower densities and temperatures
(see Fig. 2) since, by construction, the WCA potential co-
incides with the one of harmonic spheres in Eq. (14) near
the cutoff. The surprising feature is that this analogy
seems to be relevant up to the liquid densities studied
in the present work, and it results in the WCA model
behaving differently from the LJ system. As discussed
in the following section, this conclusion casts doubts on
a description of supercooled liquids in terms of the jam-
ming scenario.

VI. GLASS TRANSITION VERSUS JAMMING
PHENOMENON

The jamming paradigm [19, 44] has been put forward
to bring together in a common picture a wide breadth
of phenomena and systems involving sluggish dynamics
and freezing in an amorphous state. A step to go be-
yond qualitative comparisons has been taken with the
proposal that the slowing down of all jamming systems,
whether driven by temperature, density or applied force,
is controlled by a zero temperature and zero applied force
critical point, “point J” [29]. This proposal has been crit-
icized on several grounds, in particular concerning the
uniqueness of point J itself [45, 46], and the possibility

3

This allows us to collapse the data at high T with a good
accuracy and to extract an effective activation energy
scale E∞(ρ). The latter can then be used to compare
the relaxation data in the presence and in the absence of
attraction on a renormalized temperature scale T/E∞(ρ)
and therefore to test the above hypothesis. No emphasis
is put on the physical meaning of this Arrhenius fit, which
we take as a convenient and nonsingular representation
of the high-T data.

The results are shown in Figs. 2a, 2b where we plot
the logarithm of τα for LJ and WCA for all densities be-
tween 1.1 and 1.8 as a function of the inverse of the scaled
temperature, E∞(ρ)/T . By construction all curves co-
incide at high (scaled) temperature above some ‘onset’,
T/E∞(ρ) ! 0.3, at which the viscous regime roughly
starts and departure from simple Arrhenius fit becomes
significant. Below this onset temperature, we find that
all LJ data essentially collapse onto a master curve (with
a small deviation seen for the lowest density of 1.1), as
roughly do the WCA data for the three highest densities
(ρ = 1.4,1.6, 1.8). The coincidence between LJ and WCA
rescaled data is only fair at those densities, and the curves
clearly diverge as one lowers the density to reach values
more typical of regular supercooled liquids, i.e. ρ = 1.2
(compare Figs. 2a and 2b). The isochoric ‘fragility’ of
the WCA model is strongly density-dependent, which is
reminiscent of the behaviour found in dense fluids of har-
monic repulsive spheres [17]. This is clearly at variance
with the almost constant isochoric fragility of the LJ.

For completeness, we display in Fig. 2c the density
dependence of E∞(ρ) for the 2 systems in a log-log rep-
resentation. For LJ, it roughly goes as ρ5, in agreement
with previous work finding relaxation data collapse with
the scaling variable ργ/T with γ ! 5 [14].

The viscous slowdowns of the LJ and WCA models
are therefore not only quantitatively different at a given
density, they are also qualitatively distinct. The density
scaling of the relaxation that is empirically found in real
glassforming liquids and polymers [23, 24, 25, 26], and
in the LJ model as well (see Fig. 2a and Refs. [14, 23])
is strongly violated when attrative forces are truncated.
These findings show that, contrary to expectations, the
attractive components of the pair potentials play a cru-
cial role in the viscous liquid regime when approaching
the glass transition. A purely repulsive WCA system of
course displays a slowing down of relaxation that should
end up in glass formation at low enough T , but some
of the characteristics of this slowing down, including the
absence of density scaling of the relaxation time, are at
odds with the behavior of the full LJ model it is supposed
to describe, and of real glass-formers.

Finally, we map out in Fig. 3 the various regimes stud-
ied here in a (ρ, T ) phase diagram and discuss the rel-
evance of our findings to real glass-formers. On top of
the thermodynamic transition lines, we have plotted the
empirically determined mode-coupling line, Tc(ρ), as an
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FIG. 2: Rescaling of the relaxation data for the LJ and WCA
models over a wide range of densities and temperatures. We
use the activation energy scale E∞(ρ) obtained by fitting the
high-T data to an Arrhenius formula. (a) Arrhenius plot of
the relaxation time for a scaled temperature T/E∞(ρ) for LJ;
(b) Same plot for WCA. Note the large change of fragility
with density for ρ <

∼
1.4, not seen in the LJ data. (c) Density

dependence of the activation energy scale for the two models,
with LJ data fitted with a power law.

indication of the trend for the (isochronic) glass tran-
sition line in the diagram. One can schematically dis-
tinguish three regions. Region (I), inside the gas-liquid
coexistence curve (or spinodal [28]), can only be accessed
by removing the attractive part of the potentials. This is
the region that could be controlled by a zero-temperature
jamming [15, 16] or glass [17] critical point. Region (II)

•In glass-forming liquids and polymers, the density scaling implies 
a density independent isochoric fragility.

•In jamming systems, the low-T behavior is that of an effective 
hard-sphere model => strong dependence of the isochoric fragility.

Lennard-Jones model: density scaling Truncated repulsive model: no scaling



Is fragility connected to 
‶cooperativity″?  



•Fragility => quasi-universal super-
Arrhenius T-dependence

•In the context of thermal activation: 
Cooperativity => many degrees of 
freedom and molecules conspire to 
make relaxation possible 
=> barrier determined by the 
minimum number of cooperatively 
(collectively) involved molecules 
and varies with T.

Generic fragile character of slowing down 
suggests cooperativity

Tempting to look for detail-independent, collective explanation,
BUT: no observed singularity, 

only modest supra-molecular length scale.

•Phenomenon is universal and 
spectacular

•Dramatic temperature 
dependence of relaxation time 
and viscosity

•Slowing down faster than 
anticipated from high-T behavior
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Beyond Adam-Gibbs: looking for a 
growing length scale

Relation between the relaxation time and a (static) length: 
From heuristic arguments,

with           . 
 
• Rigorous upper bound with            [Montanari-Semerjian, 

2006].

• At high T,                         .

• Involves static ‘point-to-set’ correlations, associated e.g. 
with the influence of amorphous boundary conditions.

log(τ(T )/τ∞) � A

T
ξ(T )ψ

ψ ≤ d

A(ξ∞)ψ = E∞

ψ = d
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THE IMPORTANT TEMPERATURE

!ere is no consensus concerning what 
speci"c temperature characterizes 
the important collective phenomena. 
!e temperature Tg is the extrinsically 
determined temperature at which the 
time to reach local equilibration exceeds 
our patience. It is the most important 
temperature from a practical standpoint, as 
it separates the glass from the liquid. But it 
is clearly irrelevant from the standpoint of 
the fundamental physics, because its value 
depends on the rate at which the liquid 
is cooled. (Because of the extraordinarily 
strong T dependence of τα, in practice 
the rate dependence of Tg is weak.) !e 
melting temperature Tm is also irrelevant; 
it is the essence of good glass-formers 
that, when supercooled, they do not 
explore the regions of con"guration space 
corresponding to the crystalline order.

Most theories invoke an important 
characteristic temperature (see Fig. 2). 
Many envisage that a true, but in 
practice unattainable, phase transition 
would occur at a temperature T0 < Tg, 
if the experiments were carried out 
su#ciently slowly that local equilibrium 
could be maintained5–8. Presumably, this 
dynamically unattainable transition would 
be a thermodynamic transition from 
a supercooled liquid to a state referred 
to as an ‘ideal glass’. It has also been 
suggested9–11 that there is a well-de"ned 
crossover temperature, T*, at which the 
characteristic collective behaviour evinced 
by the supercooled liquid begins. !is 
crossover could be thermodynamic10, 

associated with a narrowly avoided phase 
transition (T* ≥ Tm), or it could be a 
purely dynamical onset11 of collective 
congestion. !ere is a class of ‘mode-
coupling’ theories that envisage a crossover 
temperature, Tc, between Tm and Tg at 
which the dominant form of the dynamics 
changes12. Finally, there are models and 
theories in which the only characteristic 
temperature scale is microscopic, but there 
is a zero-temperature dynamical11,13 or 
thermodynamical14 critical point, which, 
although experimentally unattainable, is 
responsible for the interesting physics.

IMPORTANT THERMODYNAMICAL FACTS

For those theories that envisage a 
fundamentally thermodynamic origin of 
the collective congestion in supercooled 
liquids, the most discouraging fact is that 
there is no clear evidence of any growing 
thermodynamic correlation length. On 
the other hand, existing experiments 
only measure the density–density (pair) 
correlation function, so if the putative 
order is of a more subtle type, perhaps it 
could have eluded detection. Attempts 
to measure multipoint correlations are 
obviously of central importance, but they 
have not been successful so far.

Conversely, there are two observations 
that are challenging for those theories 
with no fundamental involvement of 
thermodynamics. !e "rst is the famous 
Kauzmann paradox15. !e excess entropy, 
ΔS, which is de"ned as the di&erence 
between the entropies of the supercooled 
liquid and the crystal, is a strongly 
decreasing function of T from Tm to Tg 
and extrapolates to 0 at a temperature, TK, 
which, for fragile glass-formers, is only 
20–30% below Tg. Even though the crystal 
is, as we argued above, not relevant to the 
physics of the supercooled liquid, there is a 
sensible rationale for considering ΔS. Most 
fragile glass-formers are molecular liquids 
in which a signi"cant fraction of the 
entropy is associated with intramolecular 
motions. By subtracting the entropy of the 
crystal, one hopes to eliminate most of the 
contributions from extraneous degrees of 
freedom. A large change in the entropy is 
something to be taken very seriously.

!e second observation is that there is 
an empirical relation between ΔS and the 
slow dynamics5,16. Speci"cally, there seems 
to be a correlation between the decrease 
of ΔS(T) and the increase of Δ(T) with 
decreasing temperature.

IMPORTANT DYNAMICAL FACTS

!e most important experimental fact 
about fragile, supercooled liquids is the 

super-Arrhenius growth of η and τα (see 
Fig. 2). Several kinds of functional "ts to 
the T dependence of η and τα have been 
presented, each motivated by a di&erent 
theoretical prejudice concerning the 
underlying physics.

A popular "t to the data over a range 
of temperature from somewhat below 
Tm down to Tg is achieved with the 
Vogel–Fulcher–Tammann (VFT) form, 
Δ(T) = DT [T0/(T – T0)], where D is a 
"tting parameter, with its implication of 
the existence of an ‘ideal glass transition’ at 
T0 < Tg where η and τα would diverge. In a 
somewhat narrower range of temperatures, 
but with fewer adjustable parameters, 
a comparably good "t to the data is 
obtained with a power-law formula17 
Δ(T) = E0[E0/T], which diverges only at 
T = 0. A somewhat better global "t over 
the whole available range of temperature, 
but with one more free parameter than 
the VFT equation, is achieved with a form 
suggested by ‘avoided critical behaviour’ 
around a crossover temperature T* 
(ref. 10). Certainly, none of the above 
formulae "t the data perfectly, but all "t 
it as well as could be expected, so it does 
not seem possible to establish the validity 
of one over the other on the basis of the 
relatively small deviations between the "ts 
and experiment.

It is also important to realize that the 
growth of the e&ective activation barrier 
Δ(T) is neither a divergent e&ect, nor a 
small one (Fig. 1); in some fragile liquids 
(for example, ortho-terphenyl), Δ(Tg) is 
roughly 3 or 4 times its high-temperature 
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Figure 2 Temperature-dependent viscosity 
of ortho-terphenyl, with the various possibly 
important temperatures indicated by arrows. 
(Several approaches take T = 0 as the only relevant 
temperature.) The original data are taken from 
references listed in refs 3 and 4.
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Figure 1 Temperature-dependent effective activation 
energy of several supercooled liquids (see equation 
(1)) in units of the empirically determined crossover 
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references listed in refs 3 and 4.
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Fragility implies a growing length scale

log(τ(T )/τ∞) � E∞
T

(ξ(T )/ξ∞)ψ

Super-Arrhenius dependence of τ(T) => At some point, ξ(T) must 
grow when temperature T decreases => cooperativity!

A high fragility helps observing cooperative behavior but per se the 
magnitude does not tell us anything on its nature (theory dependent).



• The concept of fragility describes both a generic, universal, 
character of glass-formers (the super-Arrhenius T-
dependence) and a material-specific property.

• Not easy to define an intrinsic measure of fragility, which 
would exclude as much as possible spurious and irrelevant 
effects and would allow more meaningful correlations with 
other characteristics of glass-formers.

• The fragility of glass-forming liquids and polymers appears of 
different nature than that of soft-condensed jamming systems.                                                       

• Fragility seems to implies cooperativity of the dynamics, but 
no obvious implication from the magnitude of the fragility.
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Conclusion


