Fragility and the Rate of Structural Ordering in a Supercooled Metallic Liquids

K. F. Kelton

Physics Department & Institute of Materials Science & Engineering (IMSE) Washington University, St. Louis, MO

National Science Foundation

Metallic Glasses

Are There Clues for Good Glass Formation in the High Temperature Liquid?

Containerless Processing – ESL (Electrostatic Levitation)

- Designed to be transportable
- Liquid measurements
 - Synchrotron X-ray scattering
 - Maximum undercooling
 - Specific heat
 - Density
 - Viscosity
 - Surface tension

X-ray Scattering Studies with WU-BESL

Icosahedral Ordering in a Ti_{39.5}Zr_{39.5}Ni₂₁ Liquid and Nucleation

Consequences of ISRO

Crystal Nucleation Rate

$$I = \frac{A}{h} \exp\left(-\frac{B}{T} \frac{S^3}{Dg^2}\right)$$

Based on Experiment and MD, ISRO:

- Increases σ
- Lowers energy of liquid, decreasing Δg
- Increases viscosity

Temperature (K)

 Decreases nucleation rate for crystal phases

But:

- a. While icosahedral ordering is very common in transition metal liquids, other alloy liquids likely have different local local ordering structures.
- b. Other types of local order in liquids, <u>if they lower the energy of</u> <u>the liquid and are incompatible</u> <u>with structures of potential crystal</u> <u>products</u>, will help glass formation in the same way as icosahedral ordering in transition metal liquids.
- c. Icosahedral ordering can actually HURT glass formation, increasing the chance for icosahedral phase formation.

Liquid Fragility and Glass Formation

A. Takeuchi, H. Kato, A. Inoue, Intermetallics, 18, 406-411 (2010)

Stronger liquids argued to be better Metallic glass formers R. Busch et al., Acta Mater. 46, 4725 (1998).
Sha et al, *JAP*, **105**, 043521 (2009)
Russew et al, *J. Phys.: Conf. Ser.*, **144**, 012094 (2009)
Jakse and Pasturel, *Phys. Rev. B*, **78**, 214204 (2008)

I sthere a Structural Signature of Fragility?

Temperature Dependence Of the V dume

Density Measurements in BESL

- Density measured from video of sample shadow
- Data processed to identify edges of 2D silhouette (sub-pixel resolution)
- Assume symmetry around vertical axis - calculate volume

Developed from R. C. Bradshaw, D. P. Schmidt, J. R. Rogers, K. F. Kelton, R. W. Hyers , Rev. Sci. Instrum. 76: 12 125108 (2005).

Characteristic Processing Cycle for Cu₅₄Zr₄₆

Viscosity Measurements

Fragility and Glass Formabilty

J. C. Bendert and K. F. Kelton, J. Non-Cryst. Solids, **376**, 205-208, (2013) J. C. Bendert, A. K. Gangopadhyay, N. A. Mauro, and K. F. Kelton, PRL, **109** (18), 185901 (2012).

$$h = h_0 \exp \frac{6}{6} D * T_0 / (T - T_0)^{1}$$

- Larger expansivity corresponds to larger D*.... stronger liquids
- Two components to expansivity in liquids
 - Anharmonic potential & Structural ordering
- Larger expansivity suggests faster ordering rate

Chemical Ordering in Pd_{42.5}Cu₃₀Ni_{7.5}P₂₀ BMG Liquid

- Chemical ordering around P (Ni-P and Cu-P bonds increase) on cooling to $\rm T_g$ (increased magnitude of P1 over P2
- Viscosity follows the P1/P2 area ratio with supercooling. Suggests -
 - Viscosity (and directly related to chemical ordering in the liquid (clusters)
 - Maybe a structural connection with fragility?

(from D. V. Louzguine-Luzgin et. al., J. Appl. Phys., 110, 043519 (2011)

Thermal Expansivity is a Measure of Structural Ordering

Should be Observable Directly In X-Ray Scattering Studies - S(q)

Structural Ordering - Change in First Peak Height in S(q) -

N. A. Mauro, et. al., Appl. Phys. Lett. 103, 021904 (2013)

Vit 106a ($Zr_{58.5}Cu_{15.6}Ni_{12.8}AI_{10.3}Nb_{2.8}$) – strong liquid and good glass former

Continuous and gradual change with decreasing temperature

Fragility Inferred from Structural Data

Temperature

Islocahedral Ordering Linked to Fragility?

Structural Information from S(q) Data

Reverse Monte Carlo (McGreevy) -- Topological analysis

Bond Orienational Order Parameter Analysis (Steinhardt et al.)

- Calculate bond angles (θ and ϕ) between atom at center of cluster and vertex atoms
- Express as average order parameter in terms of spherical harmonics

$$Q_{l} = \stackrel{\acute{e}}{\underline{\theta}} \frac{4\rho}{2l+1} \stackrel{l}{\underset{m=-l}{\overset{l}{\otimes}}} \left| \overline{Q}_{lm} \right|^{2} \stackrel{\acute{u}^{1/2}}{\underbrace{\overset{i}{u}}} \quad where \quad \overline{Q}_{lm} = \frac{1}{N_{b}} \sum_{bonds} Y_{lm} \left(\theta(\vec{r}), \phi(\vec{r}) \right)$$

• Icosahedral order – Q_6

Honeycutt Andersen Indices (local topology in terms of 4 indices)

HA 1551 Index for Ni-Nb Glass Forming Liquids

N. A. Mauro, M. L. Johnson, J. C. Bendert and K. F. Kelton, J. Non-Cryst. Solids **362**, 237-245 (2013).

Strong liquid – good glass former

Rev. Lett., **102** (2009) 057801

Scaling Temperature

Possible Fundamental Temperatures

- T_m Equilibrium melting temperature
- T* Crossover temperature for onset of collective behavior in supercooled liquid
- T_c Mode coupling temperature
- T_g Glass transition temperature
- T_K Kauzmann temperature
- T₀ Temperature of unobtainable phase transition

(from S. Kivelson and G. Tarjus, Nature Materials, 7, 831 (2008))

T_A – Universal Scaling Temperature?

High temperature

$$t_M = t_{LC}$$

 t_M - Maxwell time (h/G_{\downarrow})
 t_{LC} - Time to break bond

- Fe: Johnson potential
- KA: Kob-Andersen potential (Ni₈₀P₂₀)
- Cu₅₆Zr₄₄: EAM
- Zr₅₀Cu₄₀Al₁₀: EAM
- Cu₅₆Zr₄₄: DFT-MD

From T. Iwashita, D. M. Nicholson, T. Egami, Phys. Rev. Lett., **110**, 205504 (2013)

We see the same scaling in our high temperatureviscosity data

Neutron Scattering – NESL (Electrostatic Levitation)

Conclusions

- Icosahedral short range ordering does not necessarily help glass formability – might enhance nucleation and growth of quasicrsytal phases.
- Fragility is correlated with liquid structure
 - Stronger liquids order gradually from high temperatures to the glass transition temperature,T_g.
 - Fragile liquids order slowly at high temperature, accelerate ordering near T_g.
- Universal scaling temperature for viscosity
 - Onset of cooperativity
 - Critical slowing down of glass transition anticipated in high temperature liquid

Acknowledgements

Washington University

- Nicholas Mauro Structure Factor Measurements
- Matthew Blodgett Viscosity Measurements
- Zohar Nussinov

University of Tennessee

• Takeshi Egami

