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Outline 

• Fragile to strong (F-S) transition 

• Exploring the F-S transition by 

–Hyperquenching-Annealing-DSC 

–Diving deeply into the supercooled region 

– In-situ structural characterization (on-going) 

• Perspective 



Fragile to strong (F-S) transition 



Why Do We Care Fragility? 

• Every step of industrial glass production depends critically on the 
viscosity of the glass-forming liquid! 

• The fragility concept is linked to fundamental glass problems! 

Google: Liquid Fragility: 1.29 mil. results, 0.4 seconds! 

Fusion draw  
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Importance of viscosity and fragility for 
glass technology 
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Two types of Angell Plots 
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Ito, Moynihan, Angell, Nature 1999 
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Way, Wadhwa, Busch, ACTA Mater (2007) 

Zhang, Hu, Yue, Mauro, JCP 2010 
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A normal case: window glass! 
 



Excellent fitting 
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An abnormal case: a glass-forming metallic liquid! 
 



The existing viscosity models cannot describe its dynamics. 
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The failed data fitting leads to our initial perception about the abnormal 
dynamics of metallic liquids and then recalled the case of water.  



We recall a striking case – water! 
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Many  metallic liquids are similar to water regarding 

Fragile-to-Strong (F-S) Transition  
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Way, Wadhwa, Busch, ACTA Mater (2007) 

Zhang, Hu, Yue, Mauro, JCP (2010)  
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f = m'/m 
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1f12?         

The strength of the F-S transition is 

determined by: 

Zhang, Hu, Yue and Mauro, JCP (2010) 



The factor f confirms the existence of the F-S transition in the 

investigated MGFLs. 

The calculated f values for different MGFLs 



The extended MYEGA model describes the F-S transition: 
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C1 and C2: two 

constraint onsets . 

W1 and W2: normalized 

weighting factors. 

If C1 = C2, the equation 

reduces to the one for 

normal liquids. 

Fragile term Strong term 

Zhang, Hu, Yue, Mauro, JCP (2010) 



Two “phases” co-exists during the F-S transition: 

Fragile and strong  phases 
The former one is being transformed into the latter one. 
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a

La55Al25Ni20

strong phase

Fragile phase:  

• higher Tg 

• higher activation enthalpy 

• higher entropy 

Strong phase: 

• lower Tg, i.e. actual Tg 

• lower activation enthalpy 

• lower entropy 

The fragile phase is cooled, the F-

S transition intervenes, mitigating 

the increase in viscosity with 

decreasing T. 



A crucial question: what is the cooling 
parth during the F-S transition? 

It is likely that  

• A direct F-S transition occurs upon cooling, 

• It occurs in the low T range, e.g., around 1.2Tg, and 

• Structural and thermodynamic values varies rapidly. 
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Viscous slowing-down upon cooling 

Martinez and Angell, Nature 2001 

Kinetic fragility Thermodynamc fragility 

Entropy loss upon cooling 
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Link between kinetic and thermodynamic fragility 

But this link is missing for F-S transition liquids! 

Why? 



Because 

 

 
• The F-S transition mostly occurs in the no-man’s land, i.e., in 

the crystallization region. 

• The crystallization hinders detection of the thermodynamic 

responses of the F-S transition. 

• Experimental approaches for detecting rapid changes in 

dynamical properties are not available yet. 
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Exploring the F-S transition by 

–Hyperquenching-Annealing-DSC 
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Yue and Angell, Nature 2004 

Energy ‘bird’ 
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Access No-Man’s land... 

Possibilities: 
• Trap the structure at high Tf and then relax it via 

annealing and calorimetric scan 
• Dive deeply into the supercooled region 
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Enthalpy relaxation of the hyperquenched (HQ) metallic ribbons 

annealed at various temperatures for 1 hour. 

Very different from enthalpy relaxation of HQ oxide glasses. 

See the following slides!  

Hu, Yue, Zhang, APL (2011) 

Hu, et al. JCP 2013 

Using the “Bird”, we try to find out the structural and 

thermodynamic elvolution during the F-S transition. 
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Onset temperature 

Tonset versus Ta  

Hu, et al. APL (2011) 

550 600 650 700
500

550

600

650

700

550 600 650 700

4

8

12

16

20

24

 

 

T
o
n
s
e
t (

K
)

Ta (K)

 Cu48Zr48Al4
 Cu45Zr45Al10

Ta,c

(a) (b)

Ta,H

Ta,H

 

 

Ta (K)

H
re

le
a
s
e
d
 (

J
/g

)

Released enthalpy 

Hanneal vs. Ta 

Non-monotonic changes!  

Implication: high degree of structural heterogeneity  



Thermodynamic implications? 

Glass transition
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• Is this non-monotonic tendency is related to the thermodynamic 

F-S transition?  

• Is it due to a sudden transformation from high to low T clusters? 
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Tf dependence of the remaining enthalpy during annealing 

Implications of the abrupt increase in Hrem: 
• High T micro-domains are unstable during cooling.  
• A rapid transition occurs between the high T and low T clusters. 
• The F-S transition range is rather narrow, possibly around 1.2-1.3Tg? 
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La55Al25Ni5Cu15 glass ribbons 

Hu, et al., to be submitted 

Similar to the behaviors observed in La55Al25Ni20  
glass ribbons 

Cu45Zr45Al10 



Relation between the F-S transition 
and structural relaxation 

• f is exponentially associated with the competition between  
and  relaxation. 

• Whether a liquid exhibits the F-S transition could be predicted 
from relaxation behaviour. 
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f = m’/m 

Ratio of activation energy for 
the  to the  relaxation  
r = E/E 

Sun et al., in progress 

f = 11exp(-0.58r)+1 

Hu, Yue, JPC-B 2009 



Origin of the F-S transition of some liquids? 

Water: 

• Jagla (1999): competition between two different local structures 

• Tanaka (2003): crossover from a non- to glass-forming branch 

• Liu (2005): a high to a low-density liquid 

Silica: 

• Saika-Voivod et al (2004) : polyamorphic behaviour of silica glass 

BeF2: 

• Angell et al (2001): Order-disorder transition and Lambda peak 

MGFLs: 

• Way, et al (2007): Order-disorder hysteritic anomaly 

• Sheng et al (Nature Mat. 2007): Polyamorphic transition 

• Hu and Yue (APL 2011, on-going): two kinds of clusters? 

 



Exploring the F-S transition by 

–Diving deeply into the supercooled region 

Aerodynamic levitator furnace for 
measuring thermophysical 
properties of refractory liquids 

At DLR 
May 2013 

Langstaff, et al. Rev. Sci. Instrum. 2013  



SiO2-Al2O3-CaO phase diagram 



Deep supercooling to access possible F-S transitions of 
refractory oxides, e.g. 

Al2O3 liquid and other aluminate liquids 

By using the containerless aerodynamic–levitation and laser-heating techniques,  

• Dive deeply into No-Man’s land 

• Determine the Angell Plot of Al2O3. 

Note: Tg was measured on thhe sputtering derived Al2O3 to get. It is a challenge 
to prepare the fused Al2O3 glass, but we’ll try… 
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Greaves, Kargl, Pan, Yue, et al. in progress 

Similar to water and metal liquids 

Possible F-S 
transition? 



Glass transition of Al2O3 

• Small Cp jump – implication of small m? 
• Caution: Sputtering dereived film– water influence 
• Thermal history needs to be known. 
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Structure of Al2O3 liquid and glass 
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G.N. Greaves, et al. Science 2008 
Yue, Kargl, G.N. Greaves, et al, in progress  

55% AlO4, 42% AlO5, 
and 3% AlO6 units 

NMR: 57.5% AlO4, 34.7% AlO5, and 
4.3% AlO6 and 3.5% AlO3, units 

Oxygen triclusters are found. 

L.B. Skinner,  et al. PRB 2013 

S.K. Lee, et al. PRL 2009 

Evolution of clusters in medium range? 

We’ll measure high Tf glasses 



Fragility of 3CaO-1Al2O3 

• Surprisingly, stable glassy C3A glass could be obtained by 
quenching. 

• A slight F-S transition is implied. 
• Structure will be measured. 
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• Conduct dynamic measurements during 
supercooling 

• Increase the Tf as high as possible   

• In-situ structural characterization (on-
going) 

• Theoretical approach and simulation 

Perspective 
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Thank you for your attention! 


