Localization, disorder and boson peak in an amorphous solid

Shankar P Das

Jawaharlal Nehru University, New Delhi

Email: shankar0359@yahoo.com

Abstract:

The inhomogeneous density n(x) of a solid, often treated as an order parameter in the density functional theories (DFT), is usually expressed as a sum of gaussian profiles respectively centered around the different points of a lattice $\{R_i\}$. The average width of the gaussian profiles represents a characteristic length 1 signifying the degree of mass localization in the system. Using analysis based on entropic considerations, we show here that as ℓ for anamorphous solid spreads beyond a critical value ℓ , the corresponding vibrational density of states $g(\omega)$ deviates from the Debye form $gD(\omega)$ to develop the boson peak. For a hard core system of diameter σ we obtain $\ell = .2\sigma$.